期刊文献+

基于盲解卷积的水声信号恢复技术 被引量:2

An underwater signal recovery technique based on blind deconvolution
下载PDF
导出
摘要 信号在环境复杂多途严重的水声波导中传输后,接收到的信号时间长度被拉长,信号是失真的。在许多实际应用中,常常希望从已失真的接收信号中把原始信号波形恢复出来。本文利用盲解卷积技术对水声信号恢复进行研究。理论推演表明,在垂直阵条件下用人造的格林函数可成功地代替水声信道真实的格林函数,可以把非线性关系化解为线性关系,从而推导出依靠基阵记录下的信息去确定声源宽带信号原始波形和环境传播特征的公式和步骤。声场数值计算对6种海底类型进行,恢复后的宽带信号与原始信号的归一化相关系数均大于0.945,对硬海底多途严重的情况,收效特别明显,证明该方法的有效性。在青岛海试中恢复后信号的相关系数平均值为0.933,在青岛海试中利用这种解卷积技术去恢复信号是成功的。 When environment is complicated, original signals may be distorted and spread in time after propagation from source to receive array. Reconstructing an unknown signal from remote measurements made in an unknown and potentially complicated wave-propagation environment is needed in many applications. A signal recovery method for blind deconvolution is formally described based on a blind deconvolution technique in this paper. For a vertical array in an ocean sound channel, Green's function can be substituted with an artificial one, and a nonlinear operation can be changed to a linear operation, as a result of which, formulation of recovery or reconstruction of undistorted broadband signals from recordings made in unknown complex multipath environments can be deduced. The results of acoustic field numerical calculation for 6 types of sediment show that the correlation of a reconstructed broadband signal with the original signal is greater than 0.945 for each type, and the recovery performance is high especially for hard sediment. A Qingdao ocean experiment is carried out to investigate the performance of the signal recovery method for blind deconvolution of a broadband point-source signal from the propagation characteristics of an unknown oceanic waveguide. The results show that the method is successful and promising; the correlation between thereconstructed signal and the original signal is more than 0.933, which demonstrates that the recovered signal is undistorted.
出处 《应用声学》 CSCD 北大核心 2011年第3期177-186,共10页 Journal of Applied Acoustics
关键词 盲解卷积 信号恢复 海上实验 Blind deconvolution, Signal recovery, Ocean experiment
  • 相关文献

参考文献14

  • 1CABRELLI C A. Minimum entropy deconvolution and simplicity: A noniterative algorithm[J]. Geophysics, 1984, 50(3): 394-413.
  • 2CAPDEVIELLE V, SERVIERE C, LACOUME J L. Blind separation of wide-band sources in the frequency domain[C]. ICASSP-95 Proceedings (IEEE, New York), 1995, 3: 2080-2083.
  • 3GURELLI M I, NIKAIS C L. EVAM: An eigenvector- based algorithm for multichannel blind deconvolution of input colored signals[J]. IEEE Trans. Signal Process, 1995, 43(1): 134-149.
  • 4BENESTY J. Adaptive eigenvalue decomposition algorithm for passive acoustic source localization[J]. J. Acoust. Soc. Am, 2000, 107(1): 384-391.
  • 5ERNST F E, HERMAN G C. Tomography of dispersive media[J]. J. Acoust. Soc. Am, 2000, 108( 1): 105-116.
  • 6BROADHEAD M K., PFLUG L A. Performance of some sparseness criterion blind deconvolution methods in the presence of noise[J]. J. Acoust Soc. Am, 2000, 107(2): 885-893.
  • 7BROADHEAD M K, PFLUG L A. Use of higher order statistics in source signature estimation[J]. J. Acoust. Soc. Am, 2000, 107(5): 2576-2585.
  • 8CHAP1N S R, IOUP G E, IOUP J W. Statistical analysis of acoustic Green's functions in a shallow ocean environment[J]. J. Acoust. Soc. Am, 2001, 109(5): 2295.
  • 9KARIM G, SABRA DAVID R. Dowling. Blind deconvolution in ocean waveguides using artificial time reversal[J]. J. Acoust. Soc. Am, 2004, 116(1): 262-271.
  • 10CAZZOLATO B S, NELSON P, JOSEPH P, et al. Numerical simulation of optimal deconvolution in a shallow water environment[J]. J.Aeoust. Soc. Am, 2001, 110(1): 170-185.

同被引文献23

  • 1孙苗钟.基于MATLAB的振动信号平滑处理方法[J].电子测量技术,2007,30(6):55-57. 被引量:39
  • 2VASEGHI S and FRANYLING C. Restoration of old gramophone recordings[J]. AES Journal of the Audio Engineering Society, 1992, 40(10): 791-801.
  • 3COCCHI G and UNCINI A. Subbands audio signal recovering using neural nonlinear prediction[C]. Proceedings of the 2001 International Conference on Acoustics, Speech and Signal Processing (ICASSP), Salt Lake City, UT, USA, 2001: 1289-1292.
  • 4ACAR E, DUNLAVY D M, KOLDA T G, et al. Scalabletensor factorizations with missing data[C]. Proceedings of the 10th SIAM International Conference on Data Mining, Columbus, OH, United States, 2010: 701-712.
  • 5ZHAO Qibin, ZHANG Liqing, and CICHOCKI A. Bayesian CP factorization of incomplete tensors with automatic rank determination[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1751-1763. doi: 10.1109/TPAMI.2015.2392756.
  • 6TAN Huachun, WU Yuankai, FENG Guangdong, et al. A new traffic prediction method based on dynamic tensor completion[J]. Procedia-Social and Behavioral Sciences, 2013, 96(8): 2431-2442. doi: 10.1016/j.sbspro.2013.08.272.
  • 7LIU Yuanyuan and SHANG Fanhua. An efficient matrix factorization method for tensor completion[J]. IEEE Signal Processing Letters, 2013, 20(4): 307-310. doi:10.1109/LSP. 2013.2245416.
  • 8CICHOCKI A, ZDUNEK R, PHAN A H, et al. Nonnegative matrix and tensor factorizations[M]. Chichester, WS: John Wiley & Sons, 2009: 28-31.
  • 9LERMAN G and ZHANG T. Robust recovery of multiple subspaces by geometric : minimization[J]. Annals ofStatistics, 2011, 39(5): 2686-2715. doi: 10.1214/11-AOS914.
  • 10CHEN Y, HSU C, and LIAO H M. Simultaneous tensor decomposition and completion using factor priorsIJ]. IEEE Transactions on Software Engineering, 2014, 36(3): 577-591. doi: 10.1109/TPAMI.2013.164.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部