摘要
为了合理处理高速铁路板式轨道结构动力学分析中板壳与梁-杆、叠加板、梁轴与弹簧、板与弹簧、板与实体等连接问题,基于Timoshenko板壳理论和直接引入法建立了多点约束方程,构造了板式轨道组合结构计算模型.该模型将组合结构中相关节点对之间位移关系,通过偏心关系和板壳理论的直线假设,建立了多点约束方程,并把该约束方程引入到Galerkin法的弱积分形式中,解决了各种不同类型单元因偏移连接而对组合结构总体刚度矩阵修正.数值分析结果与变形测试试验结果表明,基于Timoshenko板壳理论和直接引入法所建立的高速铁路板式轨道结构层有限元模型具有合理性,实现了板式轨道不同结构层的良好连接和位移协调,消除了常规方法产生的不合理附加应力,从理论上完善了有限元分析中的不同构件连接问题.
In order to appropriately deal with the connection problems in kinetic analysis such as shell-beam-bar,superposition plates,beam axis-spring,shell-spring,shell-solid connections,et al,in high speed railway's slab track,Timoshenko's shell theory and direct introduction method were applied to establish multi-point constraint equations and the calculation model of the composite slab track.In the composite structure,to solve different type elements' revision to the composite structure's total matrix caused by the elements' offset connections,the multi-point constraint equations on the basis of both the linear hypothesis in shell theory and eccentricity relations among relative nodes pairs in the composite structure were introduced to Galerkin weak form.The reliability of the FEM model on the basis of Timoshenko's shell theory and direct introduction method was proved by the comparison between numerical analysis and real measured results,and meanwhile,the model produces good connections among different layers in the structure,eliminating irrational additional stress generated in conventional methods,which improves the connection problems among different components in FEM analysis.
出处
《湖南大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2011年第5期40-47,共8页
Journal of Hunan University:Natural Sciences
基金
国家自然科学基金资助项目(50678177)
铁道部科技研究开发计划资助项目(2005K002B3)
关键词
板式轨道
有限元
约束方程
直接引入法
slab track
FEM
constraint equation
direct introduction method