期刊文献+

一种快速鲁棒的越野环境下自主移动机器人障碍检测算法 被引量:4

A Fast and Robust Obstacle Detection Algorithm for Off-road Autonomous Mobile Robots
下载PDF
导出
摘要 为了既能正确地从视差图中检测出障碍,又能鲁棒地抵抗噪声的干扰,本文提出一种快速鲁棒的越野环境下自主移动机器人障碍检测算法.首先综合利用高度约束、连续性约束和坡度约束给出了障碍点的完整定义,然后借用区域增长的思想综合多种约束进行障碍检测,最后使用冗余检测方法与多分辨率策略对算法进行优化,并对冗余检测方法的原理进行证明.实验结果证明本文算法在各种不同的环境下都有效且鲁棒,算法的平均运行时间为25 ms,能够满足实时运行的要求. In order to detect the obstacles from the disparity image correctly and resist the interference of the noise robustly,a fast and robust obstacle detection algorithm for off-road autonomous mobile robots is proposed.Firstly,a complete definition of obstacle point integrating the restrictions of height,continuity and slope is given,and then the idea of region growing is used to detect the obstacles with these restrictions.Finally,the algorithm is optimized by using the redundancy detection method and introducing the multi-dimensional strategy.In addition,the principle of the redundancy detection method is proved.Experiment results show that the algorithm is effective and robust in different environments.The average runtime of the algorithm is 25ms,which is fast enough for real time application.
作者 胡庭波 吴涛
出处 《机器人》 EI CSCD 北大核心 2011年第3期287-291,298,共6页 Robot
基金 国家自然科学基金资助项目(90820302 90820015)
关键词 自主移动机器人 立体视觉 障碍检测 区域增长 autonomous mobile robot stereo vision obstacle detection region growing
  • 相关文献

参考文献9

  • 1Defense Advanced Research Projects Agency. DARPA grand challenge rulebook[EB/OL]. (2004-10-08)[2010-07-12]. http:// www.darpa.mil/grandchallenge05/Rules_ 8oct04.pdf.
  • 2Thrun S, Montemerlo M, Dahlkamp H, et al. Stanley: The robot that won the DARPA grand challenge[M]. Berlin, Germany: Springer, 2007.
  • 3Broggi A, Caraffi C, Porta P P, et al. The single frame stereo vi- sion system for reliable obstacle detection used during the 2005 DARPA grand challenge on TerraMax trade[C]//IEEE Interna- tional Conference on Intelligent Transportation Systems. Piscat- away, NJ, USA: IEEE, 2006: 745-752.
  • 4Bellutta P, Manduchi R, Matthies L, et al. Terrain perception for DEMO III[C]//IEEE Intelligent Vehicles Symposium. Pis- caraway, NJ, USA: IEEE, 2000: 326-331.
  • 5Lombardi P, Zanin M, Messelodi S. Unified stereovision tor ground, road, and obstacle detection[C]//Intelligent Vehicles Symposium. Piscataway, NJ, USA: IEEE, 2005: 783-788.
  • 6Labayrade R, Aubert D, Tarel J-R Real time obstacle detection in stereovision on non fiat road geometry through "V-Disparity" representation[C]//Intelligent Vehicles Symposium: vol.2. Pis- cataway, NJ, USA: IEEE, 2002: 646-651.
  • 7Manduchi R, Castano A, Talukder A, et al. Obstacle detection and terrain classification for autonomous off-road navigation[J]. Autonomous Robots, 2005, 18(1): 81-102.
  • 8Santana E Santos P, Correia L, et al. Cross-country obsta- cle detection: Space-variant resolution and outliers removal[C] //IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2008: 1836-1841.
  • 9Konolige K. Small vision systems: Hardware and implemen- tation[C]//8th International Symposium on Robotics Research. 1997: 209-214.

同被引文献26

  • 1宁远明,刘晏,明建.基于反演设计的机器人动态滑模控制理论对月表机械臂模型的分析[J].仪器仪表学报,2013,34(S1):78-82. 被引量:4
  • 2于春和,刘济林.越野环境下基于四线激光雷达的障碍检测[J].南京理工大学学报,2006,30(5):618-621. 被引量:9
  • 3商尔科,李健,史美萍,等.一种基于SOPC的车道线跟踪系统架构及实现[J].中国自动化大会暨两化融合高峰论坛.2009.
  • 4Erke S, Jian L, Xiangjing A, et al. A Real-time lane departure warning system based on FPGA [J]. Pro- ceedings of IEEE International Conference on Intelligent Transportation Systems, 2011,1243-1248.
  • 5Tingbo H, Yiming N, Tao H, et al. Negative Obstacle Detection from Image Sequences [J], Proceedings of International Conference on Digital Image Processing, 2011.
  • 6Baojun Q, Tao W, Hangen H. A novel edge- aware :t-tmus filter for single image dehazing[J]. Proceed- ings of IEEE International Conference on Information Sci- ence and Technology, 2012,861-865.
  • 7SebastianThrun,MikeMontemerlo,HendrikDahlkamp,DavidStavens,AndreiAron,JamesDiebel,PhilipFong,JohnGale,MorganHalpenny,GabrielHoffmann,KennyLau,CeliaOakley,MarkPalatucci,VaughanPratt,PascalStang,SvenStrohband,CedricDupont,Lars‐ErikJendrossek,ChristianKoelen,CharlesMarkey,CarloRummel,Joevan Niekerk,EricJensen,PhilippeAlessandrini,GaryBradski,BobDavies,ScottEttinger,AdrianKaehler,AraNefian,PamelaMahoney.Stanley: The robot that won the DARPA Grand Challenge[J].J Field Robotics.2006(9)
  • 8ZHANG ZH Y, ZHAO Z P. A multiple mobile robots path planning algorithm based on a -star and dijkstra algo- rithm[ J]. International Journal of Smart Home, 2014, 8 (3) : 75-86.
  • 9DERRICK J B, BEVLY D M. Adaptive steering control of a farm tractor with varying yaw rate properties [ J ]. Journal of Field Robotics, 2009, 26(6-7): 519-536.
  • 10KUNAR U, SUKAVANAM N. Backstepping based trajecto- ry tracking control of a four wheeled mobile robot[ J ]. Inter- national Journal of Advanced Robotic Systems, 2008, 5(4) : 403- 410.

引证文献4

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部