期刊文献+

微分方程最优控制问题的超收敛分析

Superconvergence analysis of optimal control problems for differential equation
下载PDF
导出
摘要 讨论带有逐点控制约束条件的最优控制问题超收敛性.在有限元离散化中,控制变量用分片常函数近似,状态变量和伴随状态变量用分片线性函数近似,并重新构造控制变量u的插值uI.证明了状态方程为二维椭圆方程时,插值uI与控制u的有限元解uh的误差估计收敛阶为2. In this paper,superconvergence analysis of an optimal control problem is investigated with pointwise control constraints.In the finite element approximation,control is approximated by piecewise constant functions and the state and the adjoint state are discretized by linear finite elements,then the interpolation uI of the control u is constructed.We prove that the convergence order is 2 between the interpolation uI and the finite element approximation uh for a 2-d elliptic equation.
出处 《河北工业大学学报》 CAS 北大核心 2011年第2期86-89,共4页 Journal of Hebei University of Technology
关键词 最优控制问题 椭圆方程 超收敛 误差估计 插值 收敛阶 optimal control problems elliptic equations superconvergence error estimates interpolation convergence order
  • 相关文献

参考文献2

二级参考文献40

  • 1Robert A. Adams, Sobolev Spaces, Academic Press, 1978.
  • 2W. Alt, On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Opt., 12 (1984), 15-27.
  • 3W. Alt and U. Mackenroth, Convergence of finite element approximations to state constrained convex parabolic boundary control problems, SIAM J. Control Optmi., 27 (1989), 718-736.
  • 4N. Arada, E. Casas and F. TrSltzsch, Error estimates for a semilinear elliptic control problem, Comput. Optim. Appl., 23:2 (2002), 201-229.
  • 5E. Casas, M. Mateos and F. TrSltzsch, Necessary and sufficient optimality conditions for optimization problems in function spaces and applications to control theory, ESIAM, Proceedings, 13 (2003), 18-30.
  • 6E. Casas and F. Troltzsch, Second order necessary and sufficient optimality conditions for opti- mization problems and applications to control theory, SIAM J. Optimiz., 13:2 (2002), 406-431.
  • 7P.G. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978.
  • 8R.E. Ewing, M.-M. Liu and J. Wang, Superconvergence of mixed finite element approximations over quadrilaterals, SIAM J. Numer. Anal., 36 (1999), 772-787.
  • 9F.S. Falk, Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), 28-47.
  • 10T. Geveci, On the approximation of the solution of an optimal control problem governed by an elliptic equation, RAIRO Anal. Numer., 13 (1979), 313-328.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部