期刊文献+

基于线性判别分析和二分K均值的高维数据自适应聚类方法 被引量:1

Adaptive clustering method based on linear discriminant analysis and bisecting K-means for high dimensional data
下载PDF
导出
摘要 将线性判别分析和二分K均值聚类耦合在一起,提出了一个适合于高维数据聚类的自适应方法:利用线性判别分析将高维数据集变换成低维数据集,然后在低维数据集上执行二分K均值聚类,并把得到的聚类结果通过一个簇成员指示矩阵H变换到原数据集中.将这样的过程反复进行,直到自适应地得到一个最优结果.基于现实数据集的实验结果证明了该方法的有效性. Combining linear discriminant analysis(LDA) and bisecting K-means clustering(BKM),an adaptively clustering method was proposed for high dimensional data.The method uses LDA to transform the high dimensional dataset into low dimensional one,applies BKM on the low dimensional dataset,and constructs the clusters in the original high dimensional dataset.The method is adaptively executed to generate the best result.Extensive experimental results on real-world datasets showed the effectiveness of the approach.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2011年第2期106-110,共5页 Journal of Zhengzhou University of Light Industry:Natural Science
基金 陕西省自然科学基金项目(2010JM8039)
关键词 维归约 线性判别分析 二分K均值 高维数据自适应聚类方法 dimension reduction LDA bisecting K-means adaptive clustering method for high dimensional data
  • 相关文献

参考文献8

  • 1贺玲,蔡益朝,杨征.高维数据聚类方法综述[J].计算机应用研究,2010,27(1):23-26. 被引量:42
  • 2余元辉,邓莹.一种新的高维数据聚类自适应算法的研究[J].沈阳化工大学学报,2010,24(2):165-169. 被引量:1
  • 3Ding C,He X,Zha H,et al.Adaptive dimension reduction for clustering high dimensional data[C] //Proc IEEE Int'l Conf Data Mining,Washington DC:IEEE Computer Society,2002.
  • 4唐懿芳,钟达夫.主成分分析方法对数据进行预处理[J].广西师范大学学报(哲学社会科学版),2002,38(S1):223-225. 被引量:16
  • 5Berry M W.Large scale singular value computations[J].Int J of Supercomp Appli,1992,6(1):13.
  • 6Loris Nanni,Alessandra Lumini.Orthogonal linear discriminant analysis and feature selection for micro-array data classification[J].Expert Syst with Appli,2010,37(10):7132.
  • 7Steinbach M,Karypis G,Kumarv.A comparison of document clustering techniques[C] //Proc of the Sixth ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining(KDD 2000),Boston:MA,2000:20-23.
  • 8Li T,Ma S.IFD:Iterative feature and data clustering[C] //Proc SIAM Int'l Conf on Data Mining(SDM 2004),Florida:Society of Industrial and Applied Mathematics,2004:472-476.

二级参考文献36

  • 1洪志令 ,姜青山 ,董槐林 ,Wang Sheng-Rui .模糊聚类中判别聚类有效性的新指标[J].计算机科学,2004,31(10):121-125. 被引量:15
  • 2ERTOZ L, STEINBACH M, KUMAR V. Finding clusters of different sizes, shapes and densities in noisy high-dimensional data[ R]. Minnesota: Department of Computer Science, University of Minnesota, 2002.
  • 3HAM J H, LEE D D, SAUL L K. Learning high-dimensional correspondences from low dimensional manifolds [ C ]//Proc of ICML Workshop on the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining. Washington: [ s. n. ] , 2003:34-41.
  • 4KOHONEN T. Self-organization and associated memory [ M]. [ S. l. ]: Springer-Verlag, 1988.
  • 5KOHONEN T. Self-organizing maps [ M ]. New York: Spinger-Verlag, 2001.
  • 6MINKA T P. Automatic choice of dimensionality for PCA[ C ]//Proc of International Conference on Advances in Neural Information Processing Systems. Cambridge: [ s. n. ] , 2001:598-604.
  • 7GRIFFITHS T L, KALISH M L. A muhidimensional scaling approach to mental multiplication[ J ]. Memory & Cognition, 2002,30 ( 1 ) : 97-106.
  • 8CAMASTRA F, VINCIARELLI A. Estimating the intrinsic dimension of data with a fractal-based method [J].IEEE Trans on Pattern Anal Mach Intell, 2002,24(10) :1404-1407.
  • 9CAMASTRA F. Data dimension estimation methods: a survey[ J]. Pattern Recognition, 2003, 36:2945-2954.
  • 10SCHOLKOPF B, SMOLA A, MULLER K. Nonlinear component analysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998,10(5) :1299-1319.

共引文献56

同被引文献24

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部