期刊文献+

基于用户行为模型的计算机辅助翻译方法 被引量:3

Computer Assisted Translation Based on User Behavior Model
下载PDF
导出
摘要 与全自动机器翻译相比,计算机辅助翻译技术更具实用性,已成为机器翻译领域的一个研究热点。传统的辅助翻译过程中,用户只能被动接受系统提供的辅助译文,并进行翻译后编辑操作。该文提出一种基于用户行为模型的辅助翻译方法,通过实时记录用户的后编辑过程,分析出用户的翻译决策,建立用户行为模型,使得翻译系统能够动态获取和共享用户的翻译知识,从而提高辅助译文的质量。实验结果表明,在同一篇文档前30%文本的后编辑过程中建立的用户行为模型,使余下70%文本的辅助译文的BLEU值平均提高了4.9%,用户模型中翻译知识的准确率达到94.1%。 Compared with the automatic machine translation,the computer assisted translation is more practical for real applications.In traditional computer assisted translation,users can only passively accept the translation provided by the system and perform post-editing on it.This paper proposes a computer assisted translation approach based on user behavior model,in which users' explicit behaviors in the post-editing process are recorded and users' translation decisions are discovered.In this way,the system can dynamically acquire and share users' translation knowledge to improve the quality of aided translation.Experimental results show that the user behavior model built on the post-editing of the first 30% text in a document improves the BLEU score of the translation candidates for the remaining 70% text by 4.9%.The precision of the translation knowledge in user model achieves 94.1%.
出处 《中文信息学报》 CSCD 北大核心 2011年第3期98-103,共6页 Journal of Chinese Information Processing
基金 国家自然科学基金资助项目(60842005) 辽宁省教育厅高校科研计划资助项目(L2010422)
关键词 辅助翻译 后编辑 用户行为模型 翻译知识 BLEU computer assisted translation post-editing user behavior model translation knowledge BLEU
  • 相关文献

参考文献16

  • 1Nirenburg S. Machine Translation[M]. Cambridge U- niversity Press. 1987.
  • 2Nagao M. A framework of a mechanical translation be- tween Japanese and English by analogy principle[J].Artificial and Human Intelligence, 1984: 173-180.
  • 3Brown PF, Pietra SD. The mathematics of machine translation: Parameter estimation [J]. Computational Linguistics, 1993: 263-311.
  • 4Koehn P, Och FJ, Marcu D. Statistical phrase-based translation[C]//Proceedings of the NAACL 2003. 2003: 48-54.
  • 5Trados. Trados Translators Workbench, product de- scription[R]. 1997.
  • 6Eurolang. Eurolang Optimizer, product description [R]. 1999.
  • 7张桂平,蔡东风,等.翻译工作室[C]//2002年机器翻译研讨会论文集.2002.7-14.
  • 8姜柄圭,张秦龙,谌贻荣,常宝宝.面向机器辅助翻译的汉语语块自动抽取研究[J].中文信息学报,2007,21(1):9-16. 被引量:12
  • 9Martin Kay. The MIND system[J]. Natural Language Processing, 1973: 55-188.
  • 10Langlais P, Foster G, and Lapalme G. TransType:a computer aided translation typing system[C]//Work- shop on Embedded Machine Translation Systems. 2000: 46- 51.

二级参考文献11

  • 1Makoto Nagao,Shinsuke Mori.A new method of N-gram statistics for large number of n and automatic extraction of words and phrases from large text data of Japanese[A].In:Proceedings of ACL-1994[C],1994.
  • 2Xueqiang Lv,Le Zhang and Junfeng Hu.Statistical Substring Reduction in Linear Time[A].In:Proceedings of IJCNLP-2004[C],2004.
  • 3Haodi Feng,Kang Chen,Xiaotie Deng,Weimin Zheng.Accessor Variety Criteria for Chinese Word Extraction.Computational Linguistics[J].Vol.30,2004.
  • 4Dias G.,Guillor S.& Lopes J.G.P.2000b,Combining Linguistics with Statistics for Multiword Term Extraction:A Fruitful Association?[A].In:Proceedings of RIAO-2000[C],France.2000.
  • 5Schone,P.,Jurafsky D.Is knowledge-free induction of multiword unit dictionary headwords a solved problem?[A].In:Proceedings of EMNLP[C] 2001.
  • 6Magerman,D.& Marcus,M.Parsing a natural language using mutual information statistics[A].In:Proceedings of AAAI '90[C].984-989,1990.
  • 7谌贻荣.中文术语自动提取技术研究[D].北京大学计算机系,硕士学位论文,2005.
  • 8周强.汉语短语的自动划分和标注[J].中文信息学报,1997,11(1):1-10. 被引量:21
  • 9张昱琪,周强.汉语基本短语的自动识别[J].中文信息学报,2002,16(6):1-8. 被引量:41
  • 10罗盛芬,孙茂松.基于字串内部结合紧密度的汉语自动抽词实验研究[J].中文信息学报,2003,17(3):9-14. 被引量:32

共引文献11

同被引文献22

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部