期刊文献+

模型预测控制器的广义最小方差性能评价 被引量:2

Performance assessment of a model predictive controller based on generalized minimum variance
下载PDF
导出
摘要 基于滚动时域最小方差性能评价方法和广义最小方差控制原理,提出了可处理约束问题的滚动时域广义最小方差性能评价方法。该性能评价方法既可考虑过程变量的硬约束,同时相对于滚动时域最小方差性能评价方法,又可考虑操纵变量的软约束。基于Wood-Berry精馏塔模型的仿真实例证明了该性能评价方法较滚动时域最小方差性能评价方法具有更高的实际意义,并验证了这种性能评价方法的有效性。 The performance assessment of model predictive controllers has been attracting wide attention.The benchmark design and constrained processing are essential issues.A moving horizon generalized minimum variance performance assessment approach which can process constraints is derived in this paper,based on a moving horizon minimum variance performance assessment approach and the generalized minimum variance control principle.The performance assessment approach can account for hard constraints on process variables,and,unlike the moving horizon minimum variance performance assessment approach,it can also account for soft constraints on manipulated variables.Simulations based on the Wood-Berry distillation column model show that the performance assessment approach derived in this paper is of greater practical utility than the moving horizon minimum variance approach for a model predictive controller,and the validity of the approach is demonstrated.
作者 李昌磊 赵众
出处 《北京化工大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第3期118-124,共7页 Journal of Beijing University of Chemical Technology(Natural Science Edition)
基金 国家自然科学基金(60774080/60944065) 国家"863"计划(2009AA04Z135)
关键词 模型预测控制器 广义最小方差控制 约束 性能评价 model predictive controller generalized minimum variance control constraint performance assessment
  • 相关文献

参考文献14

  • 1杨马英.模型预测控制的性能监视与评价-综述[C]∥第2l届中国控制会议论文集,杭州:浙江大学出版社,2002:253-259.
  • 2Harris T J. Assessment of control loop performance [ J ]. The Canadian Journal of Chemical Engineering, 1989, 67 (10) : 856-861.
  • 3Harris T J, Boudreau F, Macgregor J F. Performance as- sessment of muhivariable feedback controllers [ J ]. Auto-matica, 1996, 32(11) : 1505-1518.
  • 4Tyler M L, Morari M. Performance assessment for unsta- hle and non-minimum-phase Detection and Supervision in systems [ C ] //On-line Fault the Chemical Process Indus- tries IFAC Workshop, Newcastle-upon-Tyne UK, 1995 187-192.
  • 5Ko B S, Edgar T F. PID control performance assessment the single-loop case[ J]. AIChE Journal, 2004, 50 (6) 1211-1218.
  • 6Harrison C A, Qin J S. Minimum variance performance map for constrained model predictive control[ J]. Journal of Process Control, 2009, 19(7) : 1199-1204.
  • 7Huang B. Muhivariate statistical methods for control loop performance assessment [ D ]. Edmonton : University of Alberta, 1997: 184-203.
  • 8Shah S L, Patwardhan R, Huang B. Multivariate control- ler performance analysis: methods, applications and chal- lenges [ C ] // AICHE Symposium Series, Edmonton, 2002: 187-219.
  • 9Julien R H, Foley M W, Cluett W R. Performance as- sessment using a model predictive control benchmark [ J ]. Journal of Process Control, 2004, 14(4) : 441-456.
  • 10Patwardhan R S, Shah S L, Genichi Emoto, et al. Per- formance analysis of model-based predictive controllers: an industrial case study[ C]//The AICHE Annual Meet-ing, Miami, Florida, 1998: 15-19.

同被引文献20

  • 1董海,王宛山,李彦平,巩亚东.分布式MPC在网络化制造环境下SCM中的应用[J].系统仿真学报,2007,19(6):1354-1357. 被引量:4
  • 2DongFei Fu, Clara M I and EI-Houssane A. A Centralized Model Predictive Control Strategy for Dynamic Supply Chain Management [C]. IFAC MIM , Saint Petersburg,2015: 19-21.
  • 3Angelo Alessandri, Mauro Gaggero and Flavio Tonelli. Min-Max and Predictive Control for the Management of Distribution in Supply Chains[J]. IEEE Transactions on control systems technology, 2011,19(5):1075- T089.
  • 4Xiang Li, Thomas E. Marlin. Robust supply chain performance via Model Predictive Control[J]. Computers and Chemical Engineering,2009,33:2134-2143.
  • 5Jay D.Schwartz,Wnlin wang,Daniel E.PJvera.Simulation-based optimization of process conterol policies for inventory management insupply ch&ins[J],A utomatica,2006,42:l 511 - 1520,.
  • 6M.W.Braun, D.E.Rivera, M.E.l=lores, W.M.Carlyle,K.Gempf.A Model Predicetive Control framework for robust management of multi-product,multi- echelon demad networks[J],Annual Reviews in Control,2003,27:229-245.
  • 7Philip Doganis,Eleni Aggelogiannaki and Harai&mbos Sarimveis. A combined model predictive control and time series forecasting framework for production-inventory systems[J]. Internaional Journal of Production Rese&rch,2008,46(24): 6841-6885.
  • 8William B. Dunbar and S. Desa Distributed Model Predictive Control for Dynamic Supply Chain Management[C].Workshop on Assessment and Future Directions of NMPC, Freudenstadt-L&uterbad, Germany, 2005,:26-30.
  • 9Walid AI-Gherwi, Hector Budman and All Elkamel. A robust distributed model predictive control algorithm[J]. Journal of Process Control.201 1,21:1127-1157.
  • 10Lino O. Santos, Lorenz T. Bieglerb and Jose A.A.M. Castro. A tool to analyze robust stability for constraine6 nonlinear MPC[J]. Journal of Process Control,2008,18:385-390.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部