摘要
针对遗传算法中交叉概率和变异概率难以选取的问题,提出一种新的自适应遗传算法:利用降半Γ分布函数对交叉概率和变异概率进行自适应调整,使这两个参数随基因串的适合度值而变化.仿真结果表明:该算法与传统遗传算法,常规自适应遗传算法相比,有效地克服了过早收敛问题,提高了搜索效率.
An new adaptive genetic algorith m is proposed to solve the problem of choosing the prob abilities of crossover and mutation , Distuibuted function of half Γdecline is defined on the fitnessvalues of the solutions . Experimental results show that this method not only avoids the problem ofpremature convergence ,but also is more effective than standard genetic algorith m and standardadaptive genetic algorith m .
出处
《广东工业大学学报》
CAS
1999年第3期44-47,共4页
Journal of Guangdong University of Technology
基金
广东省重点学科资助
关键词
遗传算法
自适应
降半Г分布函数
genetic algorith m
prem ature convergence
adaptation