期刊文献+

对称框架轨道的特征——处理复杂系统的新思维系列之六 被引量:6

Orbital Characteristics of the Symmetrical Framework——Series Six of the New Thinking Dealing with Complex Systems
下载PDF
导出
摘要 本系列论文基于《多边矩阵理论》,由东方整体性思维所启迪,试图提供并完善一套从整体到局部处理复杂系统多指标问题、非均匀性问题、非线性问题的强有力的数学工具,并对其进行严格的理论推导和证明。作为系列论文的第六篇,本文介绍了对称框架轨道特征的定义和性质,给出了对称框架轨道同构的定义,并应用轨道的特征来判定对称框架轨道是否同构。对称框架的同构是对称框架分类的理论依据,同构的框架可认为是等价的,这样可大大简化对称框架的分类问题研究。 This series of articles,based on "multilateral matrix theory'",and inspired by the Eastern holistic thinking try to provide and improve a whole system of a powerful mathematical tools to handle complex multi-target local problems,non-uniformity problems,and nonlinear problems,and provide its rigorous theoretical analysis and proof.As the sixth of a series of papers,this article describes the definition and nature of orbital characteristics of the symmetrical framework.Then,the paper gives the definition of isomorphism of the symmetrical framework.Then,the paper discusses how to determine the isomorphism of the symmetrical framework.The classification of the symmetrical framework is based on the principle of symmetrical framework isomorphism.The framework of the nature of isomorphism can be considered equivalent,so the classification of the symmetrical framework is greatly simplified.
出处 《上海应用技术学院学报(自然科学版)》 2011年第1期68-72,共5页 Journal of Shanghai Institute of Technology: Natural Science
基金 教育部高等学校博士学科点专项基金资助项目(44K55050)
关键词 对称框架 轨道的特征 同构 同构的判定定理 symmetrical framework orbit characteristics isomorphism decision theorem of isomorphism
  • 相关文献

参考文献4

二级参考文献12

  • 1张应山,茆诗松,詹从赞,郑忠国.具有两种因果关系逻辑分析模型的稳定性结构[J].应用概率统计,2005,21(4):366-374. 被引量:12
  • 2SOBOL I M, TARANTOLA S, GATELLI D, et al. Estimating the approximation error when fixing unessential facters in global sensitivity analysis[J]. Reliability Engineering and System Safety, 2007, 92:957-960.
  • 3SOBOL I M. Theorems and examples on high dimensional model representation[J]. Reliability Engineering and System Safety, 2003, 79: 187-193.
  • 4SOBOL I M, LEVITAN Yu L. On the use of variance reducing multipliers in Monte-Carlo computations of a global sensitivity index[J]. Computer Physics Communications, 1999, 117: 52-61.
  • 5SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte-Carlo estimates[J]. Mathematics and Computers in Simulation~ 2001, 55: 271-280.
  • 6ZHANG Y S , PANG S Q , JIAO Z M , ZHAO W Z. Group partition and systems of orthogonal idempotents[J]. Linear Algebra and its Application, 1998, 278: 249-262.
  • 7王伯英.多重线性代数[M],北京:北京师范大学出版社,1985.
  • 8陈雪平,潘长缘,张应山.多元函数空间的对称分解[J].数学的实践与认识,2009,39(2):167-173. 被引量:6
  • 9潘长缘,陈雪平,张应山.正交幂等系统的构造[J].华东师范大学学报(自然科学版),2008(5):51-58. 被引量:6
  • 10罗纯,张应山.框架定义及其剖分定理—处理复杂系统的新思维系列之一[J].上海应用技术学院学报(自然科学版),2010,10(2):109-114. 被引量:18

共引文献19

同被引文献19

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部