期刊文献+

Study on application of random walk method to calculate water exchange in large-scale bay 被引量:1

Study on application of random walk method to calculate water exchange in large-scale bay
下载PDF
导出
摘要 The water exchange matrix is an efficient tool to study the water exchange among the sub-areas in large-scale bays. The application of the random walk method to calculate the water exchange matrix is studied. Compared with the advection-diffusion model, the random walk model is more flexible to calculate the water exchange matrix. The forecast matrix suggested by Thompson et al. is used to evaluate the water exchange characteristics among the sub-areas fast. According to the theoretic analysis, it is found that the precision of the predicted results is mainly affected by three factors, namely, the particle number, the generated time of the forecast matrix, and the number of the sub-areas. The impact of the above factors is analyzed based on the results of a series of numerical tests. The results show that the precision of the forecast matrix increases with the increase of the generated time of the forecast matrix and the number of the particles. If there are enough particles in each sub-area, the precision of the forecast matrix will increase with the number of the sub-areas. Moreover, if the particles in each sub-area are not enough, the excessive number of the sub-areas can result in the decrease of the precision of the forecast matrix. The water exchange matrix is an efficient tool to study the water exchange among the sub-areas in large-scale bays. The application of the random walk method to calculate the water exchange matrix is studied. Compared with the advection-diffusion model, the random walk model is more flexible to calculate the water exchange matrix. The forecast matrix suggested by Thompson et al. is used to evaluate the water exchange characteristics among the sub-areas fast. According to the theoretic analysis, it is found that the precision of the predicted results is mainly affected by three factors, namely, the particle number, the generated time of the forecast matrix, and the number of the sub-areas. The impact of the above factors is analyzed based on the results of a series of numerical tests. The results show that the precision of the forecast matrix increases with the increase of the generated time of the forecast matrix and the number of the particles. If there are enough particles in each sub-area, the precision of the forecast matrix will increase with the number of the sub-areas. Moreover, if the particles in each sub-area are not enough, the excessive number of the sub-areas can result in the decrease of the precision of the forecast matrix.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第5期621-634,共14页 应用数学和力学(英文版)
基金 supported by the National Natural Science Foundation of China(No.10702050)
关键词 random walk water exchange numerical simulation Markov chain advection-diffusion random walk, water exchange, numerical simulation, Markov chain advection-diffusion
  • 相关文献

二级参考文献4

共引文献14

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部