期刊文献+

基于SQL分层抽样的数据挖掘算法的改进

Empirical study of data mining algorithm based on SQL stratified sampling
下载PDF
导出
摘要 在对数据库聚类分析的基础上进行分层抽样,并使用关联规则,得出了数据之间的潜在关系.同时,对网民健身情况调查数据进行了实证分析,在SQL Server 2005上实现了抽样后的关联规则挖掘,提高了关联的效率,并取得了良好的效果.另外,对关联规则的评估作了一定的改进创新. It was aimed to get out the potential relation by the association rule algorithm in data mining after the stratified sampling based on clustering algorithms carried out in database.Meanwhile,an empirical study about netizen keeping fit condition on association rule data mining based on sampling was realized in SQL Server 2005,optimizing the efficiency of association,and obtained good effect.On the other hand,a new evaluation rule about association was also attempted.
出处 《浙江师范大学学报(自然科学版)》 CAS 2011年第2期175-178,共4页 Journal of Zhejiang Normal University:Natural Sciences
关键词 聚类分析 分层抽样 关联规则 SQL clustering analysis stratified sampling association rule SQL
  • 相关文献

参考文献4

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C] //Proceedings of the ACM SIGMOD Conference on Management of data.New Brunswick:Publishiing House of Willey,1993:207-216.
  • 2Mannila H,Toivonen H,Verkamo A.Efficient algorithm for discovering association rules[C] //AAAI Workshop on Knowledge Discovery in Databases of Technology.Swizerland:Publishiing House of 21 st VLDB Conference Zurich,1994:181-192.
  • 3Toivonen H.Sampling large databases for association rules[C] //Proceedings of the 22nd International Conference on Very Large Database.Bombay:Publishiing House of ODB,1996:134-145.
  • 4陈耕云,李金昌.分层抽样估计精度控制方法的研究[J].统计与预测,1999(5):21-23. 被引量:2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部