期刊文献+

结合HSL模型与傅里叶描述子的三维彩色物体识别 被引量:2

Recognizing a colored object based on an HSL model and Fourier descriptors
下载PDF
导出
摘要 目标物识别是机器人导航中重要的一步,现存的方法大多对于场景中的彩色物体仅采用颜色分割,或者转化为灰度图进行识别,不能满足彩色物体识别的需要.提出在基于HSL模型颜色分割的基础上,结合傅里叶算子对轮廓特征识别的优势,先用三维目标各个角度成像的傅里叶描述子建立分类器,再对三维物体的二维成像进行轮廓特征识别,并在颜色分割的过程中采用了快速算法.实验表明,物体测试集的识别率达到了73.3%,可应用于对实时性要求比较高的彩色物体智能识别系统. Object recognition is an important step for achieving robot navigation. There are many approaches in this domain to recognize a colored object. Most of them segment an image by color to determine the target, or convert the color image to grey before recognizing it. This study focused both on color and shape information. First, the im- age was segmented based on an HSL model and flood fill algorithm; secondly, by combination with the Fourier operator that has advantage in contour feature recognition, build a classifier by Fourier descriptor to discriminate a three-dimensional object from every angle, and then identify the two-dimensional image' s outline feature of a three- dimensional object, and use a fast algorithm during color segmentation. The experiments show that the average recognition rate reaches 73.3% on the testing set. The method proposed in this paper can be applied to colored object intelligent recognition system which has higher real-time requirement.
出处 《智能系统学报》 2011年第1期73-78,共6页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60973060)
关键词 HSL颜色分割 傅里叶描述子 轮廓特征 三维彩色物体识别 color segmentation using HSL Fourier descriptors shape recognition colored object recognition
  • 相关文献

参考文献7

二级参考文献24

  • 1刘健庄,谢维信.高效的彩色图像塔形模糊聚类分割方法[J].西安电子科技大学学报,1993,20(1):40-46. 被引量:5
  • 2刘重庆,程华.分割彩色图像的一种有效聚类方法[J].模式识别与人工智能,1995,8(A01):133-138. 被引量:7
  • 3吴健康.数字图像分析[M].北京:人民邮电出版社,1989.10-25.
  • 4张朋飞 艾海舟 等.高速公路车道线的快速检测跟踪算法[J].机器人,1999,21(7):579-587.
  • 5LOWE D G.Object recognition from local scale-invariant features[C] //Proceedings of the International Conference on Computer Vision.Corfu,Greece,1999:1150-1157.
  • 6MIKOLAJCZYK K,SCHMID C.Scale and affine invariant interest point detectors[J].Intl J Computer Vision,2004,1(60):63-86.
  • 7GOOL L V,MOONS T,UNGUREANU D.Affine/photometric invariants for planar intensity patterns[C] //Proc.Fourth European Conf Computer Vision,Cambridge,Eng-land.1996:642-651.
  • 8HARRIES C,STEPHENS M.A combined corner and edge detector[C] //Fourth Alvey Vision Conference.Manchester,UK,1988:147-151.
  • 9LOWED G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 10KE Y,SUKTHANKAR R.PCA-SIFT:a more distinctive representation for local image descriptors[C] //Proc Conf Computer Vision and Pattern Recognition.Washington D.C.,USA,2004:511-517.

共引文献461

同被引文献16

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部