摘要
离散W变换(DWT)是在Hartley变换的基础上提出的。从DWT提出之后已研究出了不少快速算法,但大多数算法都局限于长度为2的幂的一维DWT。二维DWT的核是不可分离的,因而不能简单地利用一维DWT构造二维DWT的算法。本文给出了一种将二维DWT转化为一种可分离的二维变换,然后用一维DWT计算这种二维变换,并给出了其各种应用及运行时间与二维离散付里叶变换运行时间的比较结果。
A 2D discrete W transform is turned to another discrete transform method are proposed in this paper. The Kernel of the resulting transform is separable, Therefore, it can be computed by the row-column algorithm. So that, a fast algorithm is obtained for 2DDWT with arbitrary length. Methods are also given in the paper for computing 2D cyclic convolutions, 2D skew-cyclic convolutions and 2D generalized discrete Fourier transform by using 2D discrete W transform. Furthermore, running time of the algorithm on a micro computer is given, and we compare the algorithm with that algorithm of 2D discrete Fourier transform.
出处
《西北民族学院学报(自然科学版)》
1999年第1期33-39,共7页
Journal of Northwest Minorities University(Natural Science )