期刊文献+

Research and Simulation on Weak Signal Detection Based on Duffing Oscillator and Damping Ratio Perturbation 被引量:1

Research and Simulation on Weak Signal Detection Based on Duffing Oscillator and Damping Ratio Perturbation
下载PDF
导出
摘要 The chaotic system is sensitive to the initial value, and this can be applied in the weak signal detection. There are periodic, critical and chaotic states in a chaotic system. When the system is in the critical state, a small perturbation of system,n parameter may lead to a qualitative change of the system's state. This paper introduces a new method to detect weak signals by the way of disturbing the damping ratio. The authors choose the duffing equation, using MATLAB to carry on the simulation, to study the changes of the system when the signal to be measured is added to the damping ratio. By means of observing the phase loots chart and time damin chart, the weak signal will be detected.
出处 《Journal of Measurement Science and Instrumentation》 CAS 2011年第2期161-163,共3页 测试科学与仪器(英文版)
关键词 chaotic system duffing oscillator damping ratio signal detection 微弱信号检测 Duffing振子 阻尼比 小扰动 Duffing方程 混沌系统 仿真 临界状态
  • 相关文献

参考文献4

二级参考文献19

  • 1Chen,G.Chaos:Control and anti- control[J] .IEEE Circuits and Systems Society Newsletter, March.1998,(5):1 -5.
  • 2Pyragask. Experimental control of chaos by delayed self- controlling feedback [ J ]. 1993.
  • 3Pyragasek. Control of chaos by self-controlling feedback[J].Phys. Lett,A,1992:170.
  • 4Christini, D. J. & Collins, J. J,. Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model[J]. Phys. Rev.1996,53, (49).
  • 5Hall,K. ,Christini,D.J. ,Tremblay,M.& Collins,J.J.et al. Dynamic control of cardiac altemans[J].Phys. Rev. Lett.1997,78:4518- 4521.
  • 6Otte,Grebogic,Yorke J.A.Controlling chaos [J] .phys. Rev. Lett, 1990,64(11): 1196 - 1199.
  • 7Moroz,I.M. ,Baigent,S.A. ,Clayton,F.M.& Lever, K. V. Bifurcation analysis of the control ofan adaptive equalizer, Proc. R. Soc. London Series A -Math. & Phys.Sciences 1992:537,501 - 515.
  • 8Littleboy, D. M. & Smith, P. R. Using bifurcation methods to aid nonlinear dynamic inversion control law design [ J ]. Guidance Contr. Dyn. 1998,(21) :632 - 638.
  • 9刘曾荣,混沌的微扰判据,1994年,114页
  • 10王海期,非线性振动,1992年,230页

共引文献36

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部