期刊文献+

无向超图的计数级数 被引量:2

Counting Series of Undirected Hypergraphs
下载PDF
导出
摘要 应用置换群理论,引入了超过群、超围群和超图同构的概念,导出了超过群及其循环指标的一般表达式.导出了无向无标号超图和标号超目的计数级数,解决了无向超图的同构和计数问题. By applying permutation group theory,the concepts of hyperedge group, hypergraph group and hypergraph isomorphism are introduced, and the general expressions of hyperedge group and its cycle index are derived. Then the counting series are derived for undirected unlabeled and labeled hypergraphs, thus the isomorphism and counting problems of undirected hypergraphs are solved.
作者 黄汝激
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 1999年第5期507-510,共4页 Journal of University of Science and Technology Beijing
关键词 超图 同构 计数级数 无向超图 hypergraph hyperedge group hypergraph isomorphism counting series
  • 相关文献

参考文献3

共引文献3

同被引文献14

  • 1黄汝激.有向超图理论的发展和应用[J].电子科技导报,1995(3):10-12. 被引量:4
  • 2Kim S, Han H, Choe K M. Region-based parallelization of irregular reductions on explicitly managed memory hierarchies. J Supercomput, 2011, 56(1): 25.
  • 3Bauer M, Clark J, Schkufza E, et al. Programming the memory hierarchy revisited: Supporting irregular parallelism in sequoia//Proceedings of the 16th Principles and Practices of Parallel Programming (PPaPP). San Antonio, 2011 : 13.
  • 4Zhou M, Sahni O, Shephard M S, et al. Adjacency-based data reordering algorithm for acceleration of finite element computations. Sci Program, 2010, 18(2) : 107.
  • 5Camata J J, Rossa A L, Valli A M P, et al. Reordering and incomplete preconditioning in serial and parallel adaptive mesh refinement and coarsening flow solutions. Int J Numer Methods Fluids, 2012, 69(4) : 802.
  • 6Hsu C H, Chen S C. Efficient selection strategies towards processor reordering techniques for improving data locality in heterogeneous clusters. J Supercomput, 2012, 60(3): 284.
  • 7Rjeili A A, Karypis G. Multilevel algorithms for partitioning power-law graphs// Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS). Rhodes Island, 2006 : 566.
  • 8Lu H, Tan Y P, Xue X Y, et al. Real-time, adaptive, and locality-based graph partitioning method for video scene clustering. IEEE Trans Circuits Syst Video Technol, 2011, 21 (11 ): 1747.
  • 9Fan N, Pardalos P M. Linear and quadratic programming approaches for the general graph partitioning problem. J Global Optim, 2010, 48(1): 57.
  • 10Han H, Tseng C W. Exploiting locality for irregular scientific codes. IEEE Trans Parallel Distrib Syst, 2006, 17 (7) : 606.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部