摘要
基于配点的谱随机有限元方法(CSFEM)可以实现随机分析与确定性有限元分析的解耦,并通过采样,重复多次确定性有限元分析,从而得到随机有限元的解。本文以处于粘土中的柔性单桩为例,用CSFEM方法对线性土弹簧及非线性土弹簧时的单桩沉降进行随机有限元分析,计算了沉降可靠度指标,并与蒙特卡罗模拟的结果对比。算例结果显示,CSFEM方法所用到的配点数远少于蒙特卡罗模拟的样本数,但CSFEM计算结果与蒙特卡罗模拟计算结果非常接近。
A general probabilistic method called collocation-based stochastic finite element method (CSFEM) can be used to decouple stochastic computations and the deterministic finite element analysis. Comparing with classic Monte Carlo simulation, CSFEM can produce accurate estimates of the output CDF while requiring much fewer model simulations. The settlements of an axially loaded pile with linear and nonlinear soil springs are calculated respectively. The reliability index obtained from CSRSM is compared with that from direct Monte Carlo simulation. The results show that samples used in CSFEM is far less than those used in theMonte Carlo with closing computing results.
出处
《计算力学学报》
EI
CAS
CSCD
北大核心
2011年第B04期189-193,共5页
Chinese Journal of Computational Mechanics
关键词
谱随机有限元方法
非线性土弹簧
单桩沉降
蒙特卡罗模拟
collocation-based stochastic finite element method
nonlinear soil spring
pile settlement
Monte Carlo simulation