期刊文献+

Bernstein-Bézier算子点态加权逼近阶

Degree of Pointwise Weighted Approximation by Bernstein-Bézier Operators
下载PDF
导出
摘要 利用一阶加权光滑模ωφλ(f,t)w讨论了Bernstein-Bézier算子带Jacobi权w(x)=xa(1-x)b,0<a,b<1的逼近正定理,得到了逼近阶. Using one-order weighted modulus,the approximation degree is gotten by Bernstein-Bézier operators with Jacobi weight w(x)=xa(1-x)b,0a,b1.
作者 刘国芬 史冉
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期217-219,224,共4页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(10801043)
关键词 Bernstein-Bézier算子 光滑模 K-泛函 逼近阶 Bernstein-Bézier operators modulus of smoothness K-functional approximation degree
  • 相关文献

参考文献9

  • 1CHANG G.Generalized Bernstein-Bézier Polynomial[J].Comput Math,1983,l(4):322-327.
  • 2DITZIAN Z,IVANOV K.Bernstein-type Operators and Their Derivatives[J].Approx Theory,1989,56:72-90.
  • 3ZENG X.On the Rate of the Convergence of the Generalized Szasz Type Operators for Functions of Bounded Variation[J].Math Anal Appl,1998,226:309-325.
  • 4ZENG X,CHEN W.On the Rate of Convergence of the Generalized Durrmeyer Type Operators for Functions of Bounded Variation[J].Approx Theory,2000,102:1-12.
  • 5ZENG X,PIRIOU A.On the Rate of Convergence of Two Bernstein-Bézier Type Operators for Bounded Variation Functions[J].Approx Theory.1998,95:369-387.
  • 6GUO S,QI Q,LIU G.The Central Approximation Theorem for Baskakov-Bézier Operators[J].Approx Theory,2007,147:112-124.
  • 7GUO S,TONG H,ZHANG G.Poinrwise Weighted Approximation by Bernstein Operators[J].Acta Math Hungar,2003,101 (4):293-311.
  • 8DITZIAN Z,TOTIK V.Moduli of Smoothness[M].NewYork:Springer-verlag,1987.
  • 9周定轩.Bernstein算子加Jacobi权的收敛阶[J].数学学报(中文版),1992,35(3):331-338. 被引量:22

二级参考文献1

  • 1Chui C K,J Approx Theory,1988年,55卷,35页

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部