期刊文献+

基于SOFM神经网络的学生综合评价 被引量:6

Comprehensive Evaluation of Students Based on SOFM Neural Networks
下载PDF
导出
摘要 对学生的综合评价可以采用一系列可量化的指标来描述:智育素质、思想道德素质、身心素质、科学人文素质等,传统的对学生的评价很难综合考虑学生各方面的素质,从而导致评价不合理.为了能够综合评价学生各方面的素质,在提出改进的自组织特征映射(SOFM)神经网络的基础上,利用SOFM网络能够对高维数据有效分类的特点,将量化后的学生各方面的素质指标作为输入数据,在对样本数据进行训练后,根据输出神经元在输出层的位置对学生进行分类,最终把学生合理地分为优秀、良好、中等、稍差、差5个等级. The comprehensive evaluation of students depends on several factors such as the intellectual quality,the ideological and moral quality,the physical and mental quality and the scientific and humanistic quality.The traditional evaluation of students is difficult to consider various aspects of students.To totally take account of various aspects of students,an improved selforganizing feature maps(SOFM) networks is proposed,which can map high-dimensional data into simple geometric relationships on a low-dimensional display effectively.The quantitative qualities of students are used as inputs to a SOFM.After giving some training,according to the location of the output neurons in the output layer,the students are finally classified into five categories by SOFM:excellent,good,general,less poor and poor.
出处 《河北师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期239-243,共5页 Journal of Hebei Normal University:Natural Science
基金 国家自然科学基金(10771199 10871117)
关键词 自组织特征映射 神经网络 分类 学生综合评价 高维数据 SOFM neural networks classify comprehensive evaluation of students high-dimensional data
  • 相关文献

参考文献10

  • 1KOHONEN T.Engineering Application of Self-organizing Maps[J].PIEEE,1996,84(10):1358-1384.
  • 2LAMPINEN J,OJA E.Distortion Tolerant Pattern Recognition Based on Self-organized Feature Extraction[J].IEEE Trans on Neural Networks,1995,3(6):539-547.
  • 3NASEABADI N M.Vector Quantization of Images Based upon the Self-organizing Feature Maps[J].Neural Networks,1998,1(1):518-519.
  • 4NASEABADI N M,KING R A.Image Coding Using Vector Quantization:A Review[J].IEEE Trans on Comm,1998,36(8):957-971.
  • 5陆相林.基于SOFM法山东省地市旅游综合实力评价研究[J].河北师范大学学报(自然科学版),2008,32(2):269-272. 被引量:3
  • 6杨占华,杨燕.一种基于SOM和K-means的文档聚类算法[J].计算机应用研究,2006,23(5):73-74. 被引量:16
  • 7倪步喜,章丽芙,姚敏.基于SOFM网络的聚类分析[J].计算机工程与设计,2006,27(5):855-856. 被引量:24
  • 8许新征,曾文华.基于自组织特征映射神经网络的数字模式识别[J].厦门大学学报(自然科学版),2005,44(3):333-336. 被引量:3
  • 9KOHONEN T.The Self-organizing Map[J].Proceedings of the Institute of Electrical and Electronics Engineers,1990,78(9):1464-1480.
  • 10ELMAGHRABY W.The Effect of Asymmetric Bidder Size on an Auction's Performance:Are More Bidder Always Better[J].Management Science,2005,51(12):1763-1776.

二级参考文献23

共引文献42

同被引文献66

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部