期刊文献+

基于介电函数实验值拟合对一维光子晶体能带结构的分析与讨论 被引量:1

The analysis of 1D photonic crystal band structure based on the dielectric dispersion fitting
下载PDF
导出
摘要 使用与在宽波段范围内TiO2,SiO2介电函数相似的指数型函数,利用数值拟合方法,给出了与实验介电函数值完全吻合的色散关系;将其直接应用于平面波展开法,计算分析了一维TiO2/SiO2色散光子晶体能带结构.与常规平面波展开法的计算结果对照发现,由两种方法分别计算得到的能带结构中均有两个较宽的光子带隙,但两者的带宽和位置均有所不同,且改进后的计算结果中未出现中间的一个窄带隙.分析认为,改进后的平面波展开法计算出的能带结构似更符合实际. A modified plane wave expansion method based on the dispersion fitting of TiO2 and SiO2 for calculating the band structure of one dimensional(1D) TiO2/SiO2 photonic crystal is presented. Compared to band structure calculated by conventional plane wave expansion method, the dielectric dispersion of TiO2 and SiO2 has effect on the calculation of the band structure, and the present method is more effective to calculate the band structure for 1D TiO2/SiO2 photonic crystal.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2011年第3期27-30,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10974155 10774121) 兰州空间技术物理研究所表面工程技术重点实验室资助项目(9140C5402020902) 甘肃省高等学校研究生导师科研项目(0801209)
关键词 光子晶体 平面波展开法 介电函数 色散关系 photonic crystal plane wave expansion method dielectric function dispersion
  • 相关文献

参考文献14

  • 1YABLONOVITCH emission in solid-state PhysRev Lett, 1987, E. Inhibited spontaneous physics and electronics[J].58(20) : 2059-2062.
  • 2ALAGAPPAN G, WU P. Design of sharp transmission filters using band-edge resonances in one-dimensional photonic crystal hetero-struetures[J]. ApplPhys B, 2009, 96: 709-713.
  • 3TECIMER M, HOLLDACK K, ELIAS L R. Dynamically tunable mirrors for THz free electron laser applications[J]. Phys Rev ST Accel Beams,2010, 13: 030703-030712.
  • 4COLODRERO S, OCANA M, MIGUEZ H, et al. Response of nanoparticle-based one-dimensional photonic crystals to ambient vapor pressure [J]. Langmuir, 2008, 24: 9135-9139.
  • 5LOZANO G, COLODRERO S, MIGUEZ H. Theoretical analysis of the performance of onedimensional photonic crystal-based dye-sensitized solar cells[J]. J Phys Chem C, 2010, 114: 3681- 3687.
  • 6HO K M, CHAN C T, SOUKOULIS C M. Existence of a photonic gap in periodic structures[J]. PhysRevLett, 1990, 65(25): 3152-3155.
  • 7KUZMIAK V, MARADUDIN A A. Photonie band structures of one and two-dimensional periodic systems with metallic components in the presence of dissipation[J]. PhysRev B, 1997, 55(12): 7427- 7444.
  • 8QI L, YANG Z. Modified plane wave method analysis of dielectric plasma photonic crystal [J]. Progress In Electromagnetics Research, 2009, 91 : 319-332.
  • 9LI Jing-juan, LI Zhi-yuan, ZHANG Dao-zhong. Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method[J]. Phys Rev E, 2007, 75 (5): 056606-056612.
  • 10WARD A J, PENDRY J B. Calculating photonie Green's functions using a nonorthogonal finite- difference time-domain method [J].Phys Rev B, 1998, 58(11): 7252-7259.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部