摘要
从权弱分担的角度分析亚纯函数(或整函数)fn与其k阶导数[fn](k)的唯一性问题,得到f(n)=[fn](k)且f=cexp((λ/n)z)(c为非需常数,λk=1)的充分条件.
This paper studies the uniqueness of meromorphic functions(or entire functions)fn and [f^n]^((k)) concerning weakly weighted sharing one small function.It reaches the result:fn is equal to [f^n]^((k)) or f is equal to cexp((λ/n)z),where c is nonconstant and λk=1.
出处
《泉州师范学院学报》
2011年第2期37-42,54,共7页
Journal of Quanzhou Normal University
关键词
权弱分担
亚纯函数
整函数
唯一性
weakly weighted sharing
meromorphic function
entire function
uniqueness