期刊文献+

资产价格中跳的检验与度量(英文)

Testing and Measuring for Jumps in Asset Prices
下载PDF
导出
摘要 分离估计归因于跳部分和连续部分对资产定价是非常重要的.由于市场信息的流入,前者通常比后者缺少可预测性.到目前为此,小波方法对于发现跳点和估计跳大小是有力的,正如王亚珍[1].但是在一些程度上,在点估计方面不能准确地对跳的位置和大小进行估计.本文中,我们提出了改进方法去估计已实现方差,从而新的估计量被用于在不同的取样策略和检验标准下估计跳平方和,进一步我们做了大量的模拟对有限样本性质进行验证. Separating estimation due to jump and continuous parts are very impotent for asset pricing,and the former is usually less predictable than the latter due to the inflow of market news.So far,wavelets methods are powerful for detecting jump locations and jumps as demonstrated in Wang,Y[1].But to some extent,the jumps are not precisely estimated for locating and detecting in the pointwise predication.In this paper,we propose the adaptive method for estimating the realized variance,thus the new estimators are used to estimate the squared sum of jumps for the various sample strategies and test norms.Furthermore,we perform extensive simulations to examine the finite sample properties.
出处 《大学数学》 2011年第2期18-24,共7页 College Mathematics
基金 the Natural Science Research Project for Education Depart ment of Guizhou Province (20090080 , 2010076) the project of Kaili College (zl004) and the Key Discipline Construction Program of Kaili University (KZD2009001)
关键词 估计 已实现波动率 幂变差 jump estimation realized volatility power variation
  • 相关文献

参考文献13

  • 1Wang Y. Jump and Sharp cusp detection via wavelets [J]. Biometrika, 1995, 82:385--397.
  • 2Andersen T G, Bollerslev T, Diebold F X, and Labys P. Modeling and forecasting realized volatility [J]. Eeonometriea, 2003, 71 (2) :529--626.
  • 3Barndorff-Nielsen O E and Shephard N. Estimating quadratic variation using realized variance [J].Journal of Applied Econometrics, 2002, 17:457--478.
  • 4Ait-Sahalia P A, Mykland and Zhang L. How often to sample a continuous-time process in the presence of market microstructure noise[J].Review of Financial Studies, 2005, 18 :351--416.
  • 5Ghysels E P, Santa-Clara and Valkanov R. Predicting volatility: getting the most out of return data sampled at different frequencies [J]. Journal of Econometrics, 2006, 131:59--95.
  • 6Forsberg L and Ghysels E. Why do absolute returns predict volatility so well? [J]. Journal of Financial Econometrics, 2007, 5(1):31--67.
  • 7Barndorff-Nielsen O E and Shephard N. Realised power variation and stochastic volatility [J].Bernoulli, 2003, 9: 243--265.
  • 8Barndorff-Nielsen O E and Shephard N. Power and bipower variation with stochastic volatility and jumps [J]. Journal of Financial Econometrics, 2004a, 2:1--37.
  • 9Barndorff-Nielsen O E and Shephard N. How accurate is the asymptotic approximation to the distribution of realised volatility [A]. Identification and Inference for Econometric Models[C], A Festschrift in Honour of T. J. Rothenberg(D. Andrews, J. Powell, P.A. Ruud, and J. Stock, eds. ). Cambridge, UK: Cambridge University Press, 2004b, 306--332.
  • 10Barndorff-Nielsen O E and Shephard N. Econometrics of testing for jumps in financial economics using bipower variation[J]. Journal of Financial Econometrics, 2006, 4:1--30.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部