期刊文献+

无穷可数族非自射非扩张映象之公共不动点的带误差逼近问题

Approximation to Common Fixed Points of Infinite Countable Family of Nonexpansive Nonself-Mappings with Errors
下载PDF
导出
摘要 设E具Geaux可微的严格凸的自反Banach空间,C是E的一非空闭凸子集.受姚永红等2007年文献[1]的启发,本文在此Banach空间框架下引进了一涉及无穷可数族非自射非扩张映象{Ti:C→E}∞i=1的含误差的显式迭代算法,并且在非常少的限制条件下证明了该迭代序列的强收敛于无穷可数族非自射非扩张映象的一公共不动点.这个强收敛结果将姚永红等2007年文献[1]获得的主要结果从自射非扩张映象推广到非自射非扩张映象,从显式迭代算法推广到考虑一定范围误差存在的显式迭代算法. Let E be a strictly convex and reflexive Banach spaces with an uniformly Geaux differentiable norm,and C be a nonempty closed convex subset of E.Under the framework or the space E,the author introduces an explicit iteration with errors,involving an infinite countable family of nonexpansive nonself-mappings {Ti∶C→E}∞i=1,and proves under very mild conditions that the iterative sequence converges strongly to a common fixed point of {Ti}∞i=1.The strong convergence theorem extends the main result obtained by Yao-Yao-zhou [1] in 2007 from nonexpansive self-mappings into nonexpansive nonself-mappings,and from explicit iteration into explicit iteration with errors.
作者 饶若峰
机构地区 宜宾学院数学系
出处 《大学数学》 2011年第2期36-45,共10页 College Mathematics
基金 国家自然科学基金(10071048)
关键词 非自射渐进非扩张映象 Sunny非扩张收缩映象 一致Geaux可微 nonself nonexpansive mappings sunny nonexpansive retraction uniformly Geaux differentiable
  • 相关文献

参考文献16

  • 1Yao Yong-hong, Yao Jen-chih, Zhou Hai-yun. Approximation methods for common fixed points of infinite countable family of nonexpansive mappings[J].Comp. Math. Appl. , 2007, 53: 1380-1389.
  • 2Suzuki T. Strong convergence of Krasnoselskii and Mann's type sequences for one-parameter nonexpansive semigroups without Bochner integrals[J]. J. Math. Anal. Appl. , 2005, 305: 227--239.
  • 3Jung J S. Iterative approaches to common fixed points of nonexpansive mappings in Banach spaces[J].J. Math. Anal. Appl., 2005, 302: 509--520.
  • 4Chang Shih-shen. Some problems and results in the study of nonlinear analysis[J]. Nonlinear Anal. TMA, 1997, 33: 4197--4208.
  • 5Zhou Hai-yun, Wei Li, Cho Y J. Strong convergence theorems on an iterative method for a family of finite nonexpansive mappings in reflexive Banach spaces[J]. Appl. Math. Comput. , 2006, 173: 196--212.
  • 6Liu Li-shan, Ishikawa and Mann iterative processes with errors for nonlinear strongly accretive mappings in Banach space [J]. J. Math. Anal. Appl., 1995, 194: 114--125.
  • 7Bauschke H H. The approximation of fixed points of compositions of nonexpansive mappings in Banach spaces[J]. J. Math. Anal. Appl. , 1996, 202: 150--159.
  • 8Chang Shih-sen. Viscosity approximation methods for a finite family of nonexpansive mappings in Banach spaces[J]. J. Math. Anal. Appl. , 2006, 323: 1402--1416.
  • 9O' Hare J G, Pillay P, Xu H K. Iterative approaches to convex feasibility problems in Banach spaces[J]. Nonlinear Anal. TMA, 2006, 64: 2022--2042.
  • 10Shimji K, Takahashi W. Strong convergence to common fixed points of infinite nonexpansive mappings and applications[J].Taiwan Residents J. Math. , 2001, 5: 387--404.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部