期刊文献+

Bcklund变换下一类Burgers方程精确解分析 被引量:1

Exact Solution of Burgers’Equation for Bcklund Transformations
下载PDF
导出
摘要 形如ut=F(u,ux,uxx)的非线性偏微分方程由可积系统vx=P(v,u,ux),vt=Q(v,u,ux)定义的Bcklund变换u→v分类,其最简Burgers方程为ut=uxx+2uux,相应的可积系统是vx=(λ+v)(u-v),vt=(λ+v)(u2-ux-uv)-λ(λ+v)(v-v),其中,λ是任意常数。将Bcklund变换连续n次作用于Burgers方程的零解u0(x,t)≡0,并且每次取不同的参数λk(1≤k≤n),得到了Burgers方程的精确解un(x,t),并揭示了Burgers方程光滑和(或)奇异扭结解相互作用的过程。 Bcklund transformations u→v for partial differential equations of the form ut=F(u,ux,uxx) are defined via associated integrable systems of the form vx=P(v,u,ux),vt=Q(v,u,ux), only such nonlinear partial differential equation is the Burgers’ equation ut=uxx+2uux, and the associated integrable system.is vx=(λ+v)(u-v),vt=(λ+v)(u2+ux-uv)-λ(λ+v)(u-v), where λ is an arbitrary constant.It repeats the above Bcklund transformation to the zero solution u0(x,t)=0 of the Burgers’ equation, and taking differential λk(1≤k≤n) ie used to get a lot of new exact solutions of the Burgers’ equation.All these solutions reveal the interaction process of smooth and/or singular kink solutions of the Burgers’ equation.
作者 王理凡
出处 《长江大学学报(自然科学版)》 CAS 2011年第3期4-6,13,共3页 Journal of Yangtze University(Natural Science Edition)
基金 浙江省教育厅2010年度科研计划项目(Y201017755)
关键词 Bcklund变换 可积系统 BURGERS方程 扭结解 Bcklund transformation integrable system Burgers’ equation kink
  • 相关文献

参考文献7

  • 1王理凡.一类二阶非线性偏微分方程Becklund变换的分类[J].浙江大学学报(理学版),2011,38(1):19-21. 被引量:3
  • 2Cao X, Wu H, Xu C. On Miura transformations among nonlinear partial differential equations[J]. J Math Phys, 2006, 47 : 083515.
  • 3Byrnes S G. Backlund transformations and they equation [J] . J Math Phys, 1976, 17: 836-842.
  • 4Mclaughlin D W, Scott A C. A restricted Backlund transformations xx=F (x, y, z) [J] .J Math Phys, 1973, 14: 1817-1828.
  • 5Nimmo J J C, Crighton D G. Backlund transformation for nonlinear parabolic equations[J] . Proc R Soc London, 1982, 384: 381- 401.
  • 6Oliver P J. Applications of Lie Groups to Differential Equations[J]. New York : Springer-Verlag, ]993.
  • 7Wu H. On Backlund transformations for nonlinear partial differential equations [J] . J Math Anal Appl, 1995, 192: 151 - 179.

二级参考文献9

  • 1MCLAUGHLIN D W, SCOTT A C. A restricted Backlund transformations[J]. J Math Phys, 1973,14.1817-1828.
  • 2BYRNES S G. Backlund transformations and they equation zx = F (x, y, z) [J ]. J Math Phys, 1976,17 : 836-842.
  • 3NIMMO J J C, CRIGHTON D G. Bgcklund transformation for nonlinear parabolic equations [J]. Proc R Soc London, 1982,384 : 381 - 401.
  • 4CAO X, WU H, XU C. On Miura transformations among nonlinear partial differential equations [J]. J Math Phys, 2006,47:083515.
  • 5ATKINSON J. Backlund transformations for integrable lattice equations[J].J Phys A, 2008,41 : 135202.
  • 6CIESLIflSKI, BIERNACKI W. A new approach to the Darboux-Backlund transformation versus the standard dressing method[J].J Plays A, 2005,38 :9491- 9501.
  • 7CLELLAND J N, LVEY T A. Backlund transforma- tions and Darboux integrability for nonlinear wave equations[J]. Asian J Math, 2009,13 : 15 - 64.
  • 8DAI B, TERNG C L. Backlund transformations, Ward solitons and unitons[J].J Diff Geom, 2007,75 : 57-108.
  • 9DEMSKOI D. On application of Liouville type equa tions to constructing Backlund transformations[J]. J Nonlinear Math Phys, 2007,14:147 - 156.

共引文献2

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部