期刊文献+

一种采用新的相似性度量方法的共调控基因动态模糊聚类算法 被引量:1

A dynamic fuzzy clustering algorithm for analyzing co-regulated genes based on new similarity measurement
原文传递
导出
摘要 针对基因间共调控关系的特点和现有共调控基因聚类分析方法的不足,提出一种基于广义信息论中二次互信息的广义相似性度量标准QMISM,并利用免疫遗传算法将高维样本映射到二维空间,进而实现动态模糊聚类和聚类结果可视化.对人工合成数据和真实的基因表达数据的实验结果表明,该算法能得到更好的聚类结果. Based on the quadratic mutual information, this paper presents a new method of similarity measurement, i.e. QMISM. QMISM is developed on the basis of the special properties and disadvantages of existing clustering algorithm of co - mapped regulated genes. The high dimensional samples are into two dimensional spaces by immune genetic algorithm. The algorithm proposed in this pa- per implements a dynamic fuzzy clustering method and improves the clustering results' visualization. Additionally, experiments on synthetic dataset and real gene expression dataset show that the algorithm has better clustering effect.
出处 《福州大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第2期198-205,共8页 Journal of Fuzhou University(Natural Science Edition)
基金 福建省自然科学基金资助项目(2009J01283) 福建省科技计划重点资助项目(2008H0026)
关键词 共调控基因 相似性度量 免疫遗传算法 动态模糊聚类 co - regulated clustering genes similarity measurement immune genetic algorithm dynamic fuzzy
  • 相关文献

参考文献14

  • 1Yu H Y, Luscombe N M, Qian J, et al. Genomic analysis of gene expression relationships in transcriptional regulatory networks [J]. Trends in Genetics, 2003, 19(8) : 422 -427.
  • 2Ji L P, Tan K L. Mining gene expression data for positive and negative co -regulated gene clusters[J]. Bioinformaties, 2004, 20(16) : 2711 -2718.
  • 3Gaseh A P, Eisen M B. Exploring the condition co - regulation of yeast gene expression through fuzzy K - means clustering[J]. Genome Biology, 2002, 3 ( 11 ) : 1- 22.
  • 4郑岩,黄荣怀,战晓苏,周春光.基于遗传算法的动态模糊聚类[J].北京邮电大学学报,2005,28(1):75-78. 被引量:22
  • 5Jiao L C, Wang L. A novel genetic algorithm based on immunity[ C] //Proc of the IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans. 2000, 30(5) : 552 -561.
  • 6Andreia D, Rui M, Diana M. Mutual information: a measure of dependency for nonlinear time series[ J ]. Applications of Physics in Financial Analysis Ⅷ, 2004, 344(1/2) : 326 -329.
  • 7Xu D X, Principe J C. Learning from examples with quadratic mutual information [ C ] //Proc of the IEEE Workshop on Neural Networks for Signal Processing VIII. 1998 : 155 - 164.
  • 8Wu L C, Huang J L, Homg J T, et al. An expert system to identify co - regulated gene groups from time - lagged gene clusters using cell cycle expression data[J]. Expert Systems with Applications, 2010, 37 (3) : 2 202 -2 213.
  • 9Gibbons F D, Roth F P, Judging the quality of gene expression - based clustering methods using gene annotation [ J ]. Genome Research, 2002, 12(10) : 1 574 -1 581.
  • 10Gibbons F D, Roth F P, You do the clustering; we tel/you how good it is[M/OL]. Harvard Medieal School, 2002[2010 -04 -20]. http://llama. reed. harvard. edu/egl/ClusterJudge/eluster judge, pl.

二级参考文献5

共引文献21

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部