摘要
按IEC1014,将研制试验中产品的故障分为A型与B型,对研制试验的所有阶段,A型故障服从失效率λ0的指数分布,阶段i的B型故障服从失效率λi 的指数分布,若产品仅引入延缓纠正,则λi 非增,即满足顺序约束条件:λ1 ≥λ2≥…≥λm ,基于此条件,在取共轭型与无信息先验分布时,本文推导了研制试验最后阶段的失效率λ= λ0 + λm 与可靠性R(t)= e- λt(t是任务时间)的Bayes精确限。
According to IEC1014, the failures of the product under development and test are divided into A-and B-type. A-type failure follows the exponential distribution with failure rate λ 0 for all phases of development and test. B-type failure of the ith phase (i=1,2,…,m)follows the exponential distribution with failure rate λ i. If the delayed modifications are incorporated only, then λ i is non-increased, i.e.λ i satisfy following ordered constraint condition: λ 1≥λ 2≥…≥λ m Based on the condition, and taking the conjugate and noninformative prior distribution, the exact Bayesin limits of the failure rate λ=λ 0+λ m and the reliability R(t)=e -λt (tis the mission time) of last phase of development and test of the product are derived.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
1999年第6期626-629,共4页
Chinese Journal of Scientific Instrument
基金
国家自然科学基金
关键词
可靠性增长
顺序约束
Bayes限
故障分类
Reliability growth Ordered constraint Exponential distribution Delayed modification Bayesin limits