期刊文献+

阿特拉津、镉在表层沉积物(生物膜)上的干扰吸附特性

Interference adsorption properties of atrazin and cadmium on surface sediments (surface coatings)
下载PDF
导出
摘要 目的研究镉和阿特拉津共存体系中二者在表层沉积物(生物膜)上的干扰吸附特性。方法采用选择性萃取方法分离表层沉积物(生物膜)中各活性组分(铁氧化物、锰氧化物、有机质),利用Langmuir等温吸附曲线研究表层沉积物(生物膜)对阿特拉津的吸附特性及各组分对阿特拉津的吸附贡献。结果镉的存在对阿特拉津的吸附有一定的促进作用,但当镉的浓度达到8mg/L时,对阿特拉津的吸附产生抑制作用;生物膜及各组分对阿特拉津的吸附能力高于表层沉积物;表层沉积物(生物膜)非残渣态组分对阿特拉津的吸附能力均大于残渣态组分,且非残渣态中铁氧化物的单位吸附能力最强,其次是有机质。结论镉的存在能够影响表层沉积物(生物膜)对阿持拉津的吸附。 Objective Interference adsorption properties of atrazine and cadmium on surface sediments (surface coatings) in their coexisting system was studied. Method Selective extraction method was adopted to separate different active ingredients (Iron Oxides, Manganese Oxides, and Organic matter) in surface sediments (surface coatings). Langmuir adsorption isotherms was introduced to study the adsorption properties of atrazine on surface sediments (surface coatings), as well as adsorption capacity of different active ingredients on atrazine. Result Cadmium could accelerate atrazine adsorption. However, when concentration of cadmium reached up to 8mg/L, inhibitory action for its adsorption occurred. It was found that surface coatings and theirs ingredients had higher adsorption capacity on atrazine than surface sediments. It was also shown that non-residue ingredients in surface sediments (surface coatings) had higher adsorption capacity on atrazine than residue ingredients, where iron oxides of non-residue ingredients had the best adsorption capacity, followed by organic matter. Conclusion Cadmium could influence atrazine adsorption on surface sediments (surface coatings).
出处 《Journal of Chemistry and Chemical Engineering》 2008年第1期68-74,共7页 化学与化工(英文版)
基金 本课题得到国家“973”计划项目(项目编号:2004CB3418501)资助,以及华北电力大学引进高层人才科研启动基金(项目编号:X60218)资助.
关键词 阿特拉津 表层沉积物(生物膜) 干扰吸附 atrazine cadmium surface sediments (surface coatings) interference adsorption
  • 相关文献

参考文献27

  • 1Prasad T A V, Srinivas T., Reddy S. J., Reddy D. C. Arazine toxicity on transport properties of hemocyanin in the crab oziotelphusa senex. Ecotoxicology and Environmental Safety, 1995, 30: 124-126.
  • 2李在田.气相色谱测定土壤中微量阿特拉津[J].中国环境监测,2005,21(2):20-21. 被引量:16
  • 3Solomon K. R., Baker D. B., Richards E Ecological risk assessment of atrazine in North American surface water. Enviromnental Toxicology and Chemistry, 1996, 15(1): 71-76.
  • 4农药商品大全编委会.农药商品大全[M].北京:中国商业出版社,1998:640.
  • 5Anderson K. L., Wheeler K. A., Robinson J. B., Tuovinen O. H. Atrazine mineralization potential in two wetlands. Water Research, 2002, 36: 4785-4794.
  • 6Mecozzi R.. Palma L. D., Merli C. Experimental in situchemical peroxidation of atrazine in contaminated soil. Chemosphere, 2006, 62: 1481-1489.
  • 7Hopenhayn R. C., Stump M. L., Browning S. R. Regional assessment of atrazine exposure and incidence of breast and ovarian cancer in Kentucky. Archives of Environmental Contamination and Toxicology, 2002, 42(1): 127-136.
  • 8Runes H. B., Jenkins J. J., Moore J. A., Bottomley E J., Wilson B. D. Treatment of atrazine in nursery irrigation runoff by a constructed wetland. Water Research, 2003, 37: 539-550.
  • 9RAO T P G., Venugopalan V P, Nair K V K. Biofilm formation in a freshwater environment under photic and aphotic conditions. Biofouling, 1997, 11(4): 265-282.
  • 10Bohuss I., Bozoki J., Barkacs K., Zaray G. Comparison of sample preparation methods applied for determination of atrazine in freshwater biofilms by gas chromatograph mass spectrometer system. Microchemical Journal, 2003, 74: 165-171.

二级参考文献137

共引文献306

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部