期刊文献+

{VO_3}_n^(n-)和{M(bpp)(H_2O)_2}_n^(2n+)链编织的三维配位聚合物的合成、结构及电化学性质 被引量:2

Synthesis,crystal structure and electrochemical properties of 3D coordinated polymers based on{VO_3}_n^(n-) and {M(bpp)(H_2O)_2}_n^(2n+) chains
原文传递
导出
摘要 在水热条件下,合成了2个Ni(Ⅱ)和Co(Ⅱ)的配位聚合物:[M(bpp)(H2O)2V2O6]·0.4H2O(bpp=1,3-二(4-吡啶)丙烷;M=Ni(1)和Co(2)).单晶X射线衍射分析结果表明,配合物1和2是同晶异质体,是由无限的一维{VO3}nn-和{M(bpp)(H2O)2}n2n+链构筑的三维结构,{M(bpp)(H2O)2}n2n+链沿着a和b轴方向伸展,编织成互相穿插的三维结构,而{VO3}nn-螺旋链沿c轴方向穿插在{M(bpp)(H2O)2}n2n+链编织所形成的孔道中,并与M(Ⅱ)形成配位键.电化学测试表明,Li+能够可逆地在配合物1和2中进出. Two Ni(Ⅱ) and Co(Ⅱ) coordination polymers, [M(bpp)(H2O)2V2O6] 0.4H2O (bpp = 1,3'-di-pyridylpropane; M = Ni and Co), were synthesized via the hydrothermal method. The crystal structure analysis showed that the compounds were isomorphous. The {M(bpp)(H20)2}n2n+ chains are projected along the a and b axes. The chains are woven into a three-dimensional crisscross structure. The helical [VO3}nn- chains that are connected with the M(Ⅱ) are located in the {M(bpp)(H20)2}n^2n+ channels along the c axis. Electrochemical measurements showed that lithium ions can be reversibly intercalated and deintercalated in two Ni(Ⅱ) and Co(Ⅱ) coordination polymers.
出处 《科学通报》 EI CAS CSCD 北大核心 2011年第12期934-940,共7页 Chinese Science Bulletin
基金 国家自然科学基金资助项目(20773057)
关键词 钒氧酸盐 Co(Ⅱ)配合物 Ni(Ⅱ)配合物 双螺旋结构 水热合成 vanadate, Co(Ⅱ) coordination polymer, Ni(Ⅱ) coordination polymer, double helix, hydrothermal synthesis
  • 相关文献

参考文献25

  • 1Centi G, Trifro F, Ebbner J R, et al. Mechanistic aspects of maleic anhydride synthesis from C4 hydrocarbons over phosphorus vanadium oxide. Chem Rev, 1988, 88:55-80.
  • 2Hagrmann P J, Hagrmann D, Zubieta J. Organic-inorganic hybrid materials: From "simple" coordination polymers to organodiamine- templated molybdenum oxides. Angew Chem Int Ed, 1999, 38:2638-2684.
  • 3Li W, Dahn J R, Wainright D S. Rechargeable lithium batteries with aqueous electrolytes science. Science, 1994, 264:1115-1118.
  • 4Whittingham M S, Song Y, Lutta S, et al. Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J Mater Chem, 2005, 15:3362-3379.
  • 5Cento G, Trifiro F. Catalytic behavior of V-containing zeolites in the transformation of propane in the presence of oxygen. Appl Catal A, 1996, 143:3-16.
  • 6Hagrman P J, Finn R C, Zubieta J. Molecular manipulation of solid state structure: Influences of organic components on vanadium oxide architectures. Solid State Sci, 2001, 3:745-774.
  • 7Zheng L M, Zhao J S, Li K H, et al. One- and two-dimensional materials containing vanadium oxide: Structures and magnetic properties of Cu(dien)V2O6·H2O and Ni(dien)V2O6 (dien = diethylenetriamine). J Chem Soc Dalton Trans, 1999, 6:939-944.
  • 8DeBord J R D, Zhang Y, Aushalter R C, et al. One-dimensional vanadium oxide chains containing covalently bound copper coordination complexes: Hydrothermal synthesis and characterization of Cu(H2N(CH2)2NH2)[V2O6], Cu(C10H8N2)[V2O6], and Cu(C10H8N2)2[V2O6]. J Solid State Chem, 1996, 122:251-258.
  • 9Finn R C, Sims J, O'Connor C J. Solid state coordination chemistry of oxovanadates: Hydrothermal syntheses and structures of two novel copper vanadate ribbons, β-[Cu(2,2'-bipyridine)V2O6] and β-[Cu(2,2':6',2"-terpyridine)V2O6]. J Chem Soc Dalton Trans, 2002, 2: 159-163.
  • 10Liu C M, Gao S, Hu H M, et al. Hydrothermal syntheses and crystal structures of two-dimensional (2D) layered vanadium oxide com- plexes: M(bipy)(H2O)V2O6 (M = Ni, Co, bipy = bipyridine) and [Ni(bipy)2V6O17]. J Chem Soc Dalton Trans, 2002, 4:598-601.

同被引文献29

  • 1Li X F, Zhang H M, Mai Z S, et al. Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 2011, 4:1147-1160.
  • 2Skyllas-Kazacos M, Sylvania H, Miron R. All-vanadium redox battery. US Patent, 4786567, 1988-11-22.
  • 3Huang K L, Li X G, Liu S Q, et al. Research progress of vanadium redox flow battery for energy storage in China. Renew Energy, 2008 33:186-192.
  • 4Liu Q H, Aaron A S, Li Y D, et al. Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries. Electrochem Commun, 2010, 12:1634-1637.
  • 5Gaku O, Yasushi K, Takashi M. Investigation on V(IV)/V(V) species in a vanadium redox flow battery. Electrochim Acta, 2004, 49: 3091-3095.
  • 6Tang A, Bao J, Skyllas-Kazacos M. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J Power Sources, 2011, 196:10737-10747.
  • 7Kear G, Shah A A, Walsh F C. Development of the all-vanadium redox flow battery for energy storage: A review of technological, finan- cial and policy aspects. Int J Energy Res, 2012, 36:1105-1120.
  • 8Qiu G, Abhijit S J, Dennison C R, et al. 3-D pore-scale resolved model for coupled species/charge/fluid transport in a vanadium redox flow battery. Electrochim Acta, 2012, 64:46-64.
  • 9Gonzalez Z, Sainchez A, Blanco C, et al. Enhanced performance of a bi-modified graphite felt as the positive electrode of a vanadium re- dox flow battery. Electrochem Commun, 2011, 13:1379-1382.
  • 10Chang F, Hu C W, Liu X J. Coulter dispersant as positive electrolyte additive for the vanadium redox flow battery. Electrochim Acta, 2012, 60:334-338.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部