期刊文献+

钝顶螺旋藻在不同光照条件下的放氧特性 被引量:5

Oxygen evolution characteristics of Spirulina platensis under various light conditions
原文传递
导出
摘要 钝顶螺旋藻在持续照光和中等频率(0.01-20 Hz)的光/暗交替照光下的放氧特性对光生物反应器的设计和操作具有重要意义。构建了一套可实现光/暗交替的光生物反应器系统对此进行研究,结果显示:根据与放氧速率的关系,可以将光强分为4个区:光限制区(0-335μmol/(m2.s)),过渡区(335-875μmol/(m2.s)),光饱和区(875-2 775μmol/(m2.s))以及光抑制区(2 775μmol/(m2.s)以上)。提高光/暗频率能否提高微藻光合速率取决于所采用的光强和光比例:低光强、低光比例下无明显提高;在光比例处于0.1-0.6之间时,光强越高,提高光/暗频率所带来的光合速率提高的幅度越大。研究结果对于实际生产的指导意义是,在午间高光强下提高藻液混合程度所带来的光合速率的提高相对于早晚低光强下更加明显,经济上更加可行。 The knowledge of oxygen evolution characteristics,which is a symbol of photosynthetic activity,under various light conditions is important for photobioreactor design and operation.In this study,we constructed a device to investigate oxygen evolution characteristics of Spirulina platensis under two different light regimes: 1) continuous illumination of various light intensities(14?6 500 μmol/(m2?s));2) medium frequency L/D cycles of four different light intensities(69,505,1 330,4 265 μmol/(m2?s)).Light limited region,intermediate region,light saturated region and light inhibited region of light intensity were recognized according to their relationship with oxygen evolution rate(OER) under continuous illumination.Investigation of S.platensis under L/D cycles showed whether photosynthetic efficiency could be increased with increasing L/D frequency largely depended on the light intensity applied.The higher the light intensity,the larger the photosynthetic enhancement could be expected with the increase of L/D frequency.The largest light integration effect was found under L/D cycles of high light intensity(4 265 μmol/(m2?s)) and medium light fraction(k=0.6),while light integration effect was totally absent under low light fractions(k0.2).We also discussed their implications to the practical aspects of microalgae cultivation.
出处 《生物工程学报》 CAS CSCD 北大核心 2011年第4期606-613,共8页 Chinese Journal of Biotechnology
基金 国家科技支撑计划(No.2006BAD09A12)资助~~
关键词 微藻 螺旋藻 光生物反应器 光/暗交替 光合放氧 microalgae Spirulina oxygen evolution rate photobioreactor light/dark cycles
  • 相关文献

参考文献14

  • 1Raja R, Hemaiswarya S, Kumar NA, et al. A perspective on the biotechnological potential of microalgae. Crit Rev Microbiol, 2008, 34(2): 77-88.
  • 2Spolaore P, Joannis-Cassan C, Duran E, et al. Commercial applications of microalgae. J Biosci Bioeng, 2006, 101 (2): 87-96.
  • 3Richmond A. Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 2004, 512(1/3): 33-37.
  • 4Phillips JN, Myers J. Growth rate of chlorella in flashing light. Plant Physiol, 1954, 29(2): 152-161.
  • 5Matthijs HCP, Balke H, van Hes UM, et al. Application of light-emitting diodes in bioreactors: flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol Bioeng, 1996, 50(1): 98-107.
  • 6Nedbal L, Tichy V, Xiong FS, et al. Microscopic green algae and cyanobacteria in high-frequency intermittent light. J Appl Phycol, 1996, 8(4/5): 325-333.
  • 7Grobbelaar JU. Tubulence in mass algal cultures and the role of light/dark fluctuations. J Appl Phycol, 1994, 6(3): 331-335.
  • 8Lee YK, Pirt SJ. Energetics of photosynthetic algal growth: influence of intermittent illumination in short (40 s) cycles. J Gen Microbiol, 1981, 124(1): 43-52.
  • 9Grobbelaar JU. The influence of light/dark cycles in mixed algal cultures on their productivity. Bioresour Technol, 1991, 38(2/3): 189-194.
  • 10Converti A, Lodi A, Del Borghi A, et al. Cultivation of Spirulina platensis in a combined airlift-tubular reactor system. Biochem Eng J, 2006, 32(1): 13-18.

二级参考文献14

  • 1Chisti Y. Biodiesel from microalgae. Biotechnol Adv, 2007, 25 : 294 -306.
  • 2Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol, 2001, 57:287 - 293.
  • 3Carvalho A P, Meireles L A, Xavier Malcata F. Microalgal Reactors: a review of enclosed system designs and performances. Biotechnol Progr, 2006, 22 : 1490 - 1506.
  • 4Hu Q, Zarmi Y, Richmond A. Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). Eur J Phycol, 1998, 33 : 165 - 171.
  • 5Zou N, Richmond A. Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. J Biotechnol, 1999, 70(1-3) : 351 -356.
  • 6Hu Q, Hugou G, Richmond A. Physiological characteristics of Spirulina platensis (Cyanobacteria) cultured at ultra high cell densities. J Phycol, 1996, 32 : 1066 - 1073.
  • 7Pushparaj B, Pelosi E, Tredici M R, et al. An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol, 1997, 9:113 - 119.
  • 8Hu Q, Guterman H, Richmond A. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng, 1996, 51 : 51 -60.
  • 9Zhang K, Kurano N, Miyachi S. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical fiat-plate photobioreactor. Bioprocess Biosyst Eng, 2002, 25 : 97- 101.
  • 10Merchuk J C, Ronen M, Giris S, et al. Light/dark cycles in the growth of the red microalga porphyridium sp. Biotechnol Bioeng, 1998, 59:705-713.

共引文献5

同被引文献95

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部