期刊文献+

厌氧流化床无膜微生物燃料电池的床层膨胀高度与产电特性 被引量:4

Effect of Bed Expansion Height on Electrogenesis Capacity of Anaerobic Fluidized Bed Membraneless Microbial Fuel Cell
原文传递
导出
摘要 考察了厌氧流化床床层膨胀高度对电池不同阴极位置(阴极1,2,3分别位于分布板上方150,250,350mm)产电性能的影响.膨胀高度低于170mm时,电池功率随阴极位置沿轴向高度增加而减小,同一流速下,阴极1的最大电极输出功率最大,为347.1mW/m2.膨胀高度在170~270mm时,同一流速下,阴极2的最大产电功率高于阴极1和阴极3,当流速为8.35mm/s时,达361.0mW/m2.膨胀高度在400mm以下,同一流速下3处阴极的最大产电功率均降低,阴极3最大产电功率降低幅度较小,为297.5mW/m2,电池功率随阴极位置沿轴向高度增加而增大.该结果是流速对阳极室内传质及电子传递效率、流速对微生物膜生长双重影响的结果. Anaerobic fluidized bed microbial fuel cell(MFC) with 40 mm in diameter and 600 mm in height was employed to investigate the effect of fluidization bed expansion on the electrogenesis capacity of MFC.Three different cathodes were investigated for cathode positions at 150,250 and 350 mm above distributor.When the expansion height was less than 170 mm,the electrogenesis capacity at cathode 1 was the maximum,up to 347.1 mW/m2.The power density decreased with decreasing cathode position along the bed height.When the expansion height ranged from 170 to 270 mm.The electrogenesis capacity at cathode 2 was larger than that at cathodes 1 and 3,which approached 361.0 mW/m2 when the flow rate of wastewater was kept at 8.35 mm/s.When the expansion height of fluidization bed was 270 to 400 mm,the electrogenesis capacity of three cathodes was all decreased.However,cathode 3 had a minimum decline value,297.5 mW/m2 at the flow rate of wastewater of 10.61 mm/s.The power density increased with increasing cathode position along the bed height.The results were due to the effects of the flow rate on the mass and electron transport efficiency in anode chamber,and the effects of the flow rate on the growth of microbial film.
出处 《过程工程学报》 CAS CSCD 北大核心 2011年第2期199-203,共5页 The Chinese Journal of Process Engineering
基金 教育部博士点专项基金资助项目(编号:20103719120004) 山东省杰出青年基金资助项目(编号:JQ200904)
关键词 微生物燃料电池 厌氧流化床 床层膨胀高度 功率密度 阴极位置 microbial fuel cell anaerobic fluidized bed bed expansion height power density cathode position
  • 相关文献

参考文献4

二级参考文献66

共引文献83

同被引文献43

  • 1曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究[J].环境科学学报,2006,26(8):1252-1257. 被引量:66
  • 2陈忠平,褚道葆,陈君华,过家好,尹晓娟,吴何珍.循环伏安法的电扫描方式对苯胺聚合产物形貌影响的观察[J].高分子学报,2007,17(6):536-540. 被引量:20
  • 3Kong W F,Guo Q J, Wang X Y. Electricity generation fromwastewater using an anaerobic fluidized bed microbial fuelcell [J]. Ind. Eng. Chem. Res. , 2011,50 (21): 12225-12232.
  • 4Fu Jie (付洁),Zhao Hai (赵海),Jin Yanling (靳艳玲),Gan Mingzhe (甘明哲).Characteristics of electricigens inanode and cathodic acceptors and research progresses inmicrobial fuel cell [J]. 生物技术通报, 2008 (zl): 90-94.
  • 5Xie J, Wood D L, More K L, et al. Microstructural changesof membrane electrode assemblies during PEFC durabilitytesting at high humidity conditions [J]. J. Electrochem.Soc.,2005, 152: A 1011-A 1020.
  • 6Roen L M, Paik C H,Jarvi T D. Electrocatalytic corrosionof carbon support in PEMFC cathodes [J]. Electro Chem.Solid-State Lett.,2004 , 7 : A 19-22.
  • 7Lawrence D , Souza, Sampath S. Preparation andcharacterization of silane-stabilized, highly uniform,nanobimetallic Pt-Pd particles in solid and liquid matrixes[J]. Langmuir,2000, 16: 8510-8517.
  • 8Ozaki Y,Suzuki S,et al. Enhanced long term stability ofSn02 based CO gas sensors modified by sulfuric acidtreatment [J]. Sens Actuators B, 2000,62: 220.
  • 9Gasteiger H A, Markovic N M, Ross P N. Electrooxidationof CO and H2 mixtures on a well characterized Pt-Snelectrode surface [J], J, Phys. Chem.,1995,99: 8945-8949.
  • 10Zhang J, Vukmirovic M B,Sasaki K,et al. Mixed-metal Ptmonolayer electrocatalysts for enhanced oxygen reductionkinetics [ J ]. J. Am. Chem. Soc.,2005,127 ( 36 ):12480-12481.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部