摘要
The brachial plexus, a complex network of peripheral nerves, involves the motor, sensory, and sympathetic nerve supply to the upper extremity, and is formed by the union of the ventral primary rami of the spinal nerves. Brachial plexus trauma, damage to the complex of nerves, has a high incidence from delivery throughout life, leading to loss of all innervation of the arm and hand, their paralysis, and frequently results in excruciating neuropathic pain. The most frequent brachial plexus repair techniques use autologous sensory nerve grafts to bridge the nerve gaps. However, these do not induce reliable neurological recovery or reduce neuropathic pain, thus permanent neurological loss and neuropathic pain frequently occur. The present study evaluated the current best brachial plexus repair techniques and another involving a collagen tube filled with autologous platelet-rich fibrin that clinically induces extensive neurological recovery and a reduction/elimination of neuropathic pain, which are not possible by sural nerve grafts, even across long nerve gaps that are repaired years post trauma, and in older patients. This novel technique is proposed for use in restoring brachial plexus neurological function and in reducing/eliminating neuropathic pain.
The brachial plexus, a complex network of peripheral nerves, involves the motor, sensory, and sympathetic nerve supply to the upper extremity, and is formed by the union of the ventral primary rami of the spinal nerves. Brachial plexus trauma, damage to the complex of nerves, has a high incidence from delivery throughout life, leading to loss of all innervation of the arm and hand, their paralysis, and frequently results in excruciating neuropathic pain. The most frequent brachial plexus repair techniques use autologous sensory nerve grafts to bridge the nerve gaps. However, these do not induce reliable neurological recovery or reduce neuropathic pain, thus permanent neurological loss and neuropathic pain frequently occur. The present study evaluated the current best brachial plexus repair techniques and another involving a collagen tube filled with autologous platelet-rich fibrin that clinically induces extensive neurological recovery and a reduction/elimination of neuropathic pain, which are not possible by sural nerve grafts, even across long nerve gaps that are repaired years post trauma, and in older patients. This novel technique is proposed for use in restoring brachial plexus neurological function and in reducing/eliminating neuropathic pain.