期刊文献+

光谱数据变换对玉米氮素含量反演精度的影响 被引量:21

Effect on Retrieval Precision for Corn N Content by Spectrum Data Transformation
原文传递
导出
摘要 通过对玉米叶片光谱数据进行6种变换,分析了变换后的光谱值与叶片氮素含量的相关关系,探讨了550 nm和680 nm两波段处不同形式光谱变量对氮素含量反演的精度。结果表明,微分处理(D(R)、D(log(R))和D(N(R)))显著改变了氮素含量与光谱值的相关性,归一化(N(R))次之,对数处理几乎无变化(R与log(R),N(R)与log(N(R)))。不同的变换形式之间,与氮素含量相关性高的,所建立的回归模型的决定系数较高,模型的精度也较高。在波段550 nm和680 nm波段处,光谱数据的归一化对数处理(log(N(R)))能显著提高回归模型对氮素含量的反演精度。 It was analyzed that correlation between the transformed spectrum value and leaf nitrogen content,further more it was researched that retrieval precision for the nitrogen content with different form spectrum variables in 550nm and 680nm wave band by carrying on 6 kind of transformations to the corn leaf spectrum data.The results showed that differential form(D(R),D(Log(R))and D(N(R))) could significantly change the correlation between the nitrogen content and the spectrum value,and the normalized form(N(R))was next and the last was logarithm form(R and Log(R),N(R)and log(N(R))).In addition,determined coefficient of regression model was larger and the model precision was higher correspondingly with better correlation between different form spectrum variables and nitrogen content.In this study,the normalized logarithm form(log(N(R))) parameter of spectrum data could significantly improve the precision of regression model for retrieval nitrogen content in 550nm and 680nm wave band.
出处 《遥感技术与应用》 CSCD 北大核心 2011年第2期220-225,共6页 Remote Sensing Technology and Application
基金 国家自然科学基金项目(31000937) 中国农科院农业资源与农业区划研究所中央级公益性科研院所基本科研业务费专项资金(2009-6)资助
关键词 叶片光谱反射率 数据变换 氮素 反演精度 Leaf spectral reflectance Data transformation Nitrogen Retrieval precision
  • 相关文献

参考文献22

  • 1Daughtry C S T, Walthall C L, Kim M S, et al. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance[J]. Remote Sensing of Environment, 2000,74: 229-239.
  • 2Haboudane D, Tremblay N, Miller J R,et al. Remote Estima tion of Crop Chlorophyll Content Using Spectral Indices De- rived from Hyperspectral Data[J]. IEEE Transaction on Geo- science and Remote Sensing,2008,46:423-437.
  • 3Samborski S M,Tremblay N,Fallon E. Strategies to Make Use of Plant Sensors based Diagnostic Information for Nitrogen Recom- mendations[J]. Agronomy Journal,2009,101 :800-816.
  • 4沈艳,牛铮,王汶,徐永明.基于导数光谱位置变量的干叶片生化组分反演[J].遥感信息,2005,27(4):7-9. 被引量:10
  • 5张良培,郑兰芬,童庆禧.利用高光谱对生物变量进行估计[J].遥感学报,1997,1(2):111-114. 被引量:87
  • 6Gong P,Pu R Iv,Miller J R. Correlating Leaf Area Index of Ponderosa Pine with Hyperspectral CASI Data[J]. Canadian Journal of Remote Sensing, 1992,18 : 275-282.
  • 7Gong P,Pu R I., Yu B. Conifer Species Recognition: Explora- tory Analysis of in Situ Hyperspectral Data[J]. Remote Sens- ing of Environment, 1997,62 : 189-200.
  • 8ANCAI. Inc. C-SPEC Data Acquisition and Manipulation Pr- ogram:Users Guide & Operating Instructions[S]. 1995,1:5.
  • 9浦瑞良,宫鹏,约翰R.米勒.用CASI遥感数据估计横跨美国俄勒冈州针叶林叶面积指数[J].南京林业大学学报(自然科学版),1993,17(1):41-48. 被引量:15
  • 10张玉森,姚霞,田永超,曹卫星,朱艳.应用近红外光谱预测水稻叶片氮含量[J].植物生态学报,2010,34(6):704-712. 被引量:29

二级参考文献56

共引文献243

同被引文献307

引证文献21

二级引证文献167

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部