期刊文献+

面向无参考图像的清晰度评价方法研究 被引量:43

Research of Definition Assessment based on No-reference Digital Image Quality
原文传递
导出
摘要 图像的清晰度是衡量数字图像质量优劣的重要指标。基于面向无参考图像质量评价,重点介绍了目前较为常用的、具有代表性的几种清晰度评价算法,并从算法的单峰性、无偏性、灵敏性,与图像尺度、内容的无关性,以及与主观感知的一致性3个方面的性能进行了对比和分析,以求准确客观地评价各清晰度算法,达到在实际应用中合理、有效地评价图像清晰度的目的。 Image definition is an important indicator of digital image quality.Oriented to the application of No-reference image quality assessment,some representative definition evaluation algorithms are introduced in this paper.In order to accurately and objectively assess each algorithm and to effectively evaluate image definition in the practical application,comparisons and analysis on performance of each algorithm are also done from the following aspects:single peak,no bias,sensitivity;the independence of image size and content;the consistency with subjective perception.Results show the ReBlur and NRSS algorithm have better evaluation performance than other algorithms for the No-reference image quality assessment.
出处 《遥感技术与应用》 CSCD 北大核心 2011年第2期239-246,共8页 Remote Sensing Technology and Application
基金 "基于物理量反演的卫星探测能力评估技术研究"项目
关键词 图像质量 清晰度 性能评价 Image quality Definition Performance evaluation
  • 相关文献

参考文献29

  • 1Wang Z,Sheikh H R, Alan C B. Objective Video Quality As- sessment[C]//The Handbook of Video Databases.. Design and Applications. Florida : CRC Press, 2003,1041-1078.
  • 2Ng K C, Nathaniel P, Aun N, et al. Practical Issues in Pixel- based Auto-focusing for Machine Vision[C]// Proceedings of the 2001 IEEE. International Conference on Robotics & Au- tomation,Seoul,Korea May 21-26,2001:2791-2796.
  • 3Subbarao M,Tyan J K. Selection the Optimal Focus Measure for Auto-focusing and Depth from Focus[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence, 1998,20(8):864-870.
  • 4Schlag J F, Sanderson A C, Neuman, C P, et al. Implementa- tion of Automatic Focusing Algorithms for a Computer Vision System with Camera Control[R]. Technical Report CMU-RI- TR-83 14,Carnegie Mellon University,1983.
  • 5Tenenbaum J M. Accommodation in Computer Vision[D]. Ca- lifornia : Stanford University, 1970.
  • 6Krotkov E P. Active Computer Vision by Cooperative Focus and Stereo[M]. Springer-Verlag, 1989.
  • 7孙越,栾晓明,赵芳.一种改进的图像清晰度评价函数[J].应用科技,2009,36(9):52-55. 被引量:12
  • 8蒋婷,谭跃刚,刘泉.基于SOBEL算子的图像清晰度评价函数研究[J].计算机与数字工程,2008,36(8):129-131. 被引量:39
  • 9Jarvis R A. Focus Optimization Criteria for Computer Image Processing[J]. Microscope, 1976,24(2) : 163-180.
  • 10吴利明,陶晓杰.一种新的图像清晰度评价方法[J].仪器仪表用户,2008,15(6):84-86. 被引量:7

二级参考文献64

共引文献371

同被引文献340

引证文献43

二级引证文献198

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部