摘要
AIM: To study the effect of viscosity on axial force in the esophagus during primary peristalsis using a newly validated impedance-based axial force recording technique. METHODS: A probe able to simultaneously measure both axial force and manometry was positioned above the lower esophageal sphincter. Potable tap water and three thickened fluids were used to create boluses of different viscosities. Water has a viscosity of 1 mPa·s. The three thickened fluids were made with different concentrations of Clinutren Instant thickener. The viscous fluids were in appearance comparable to pudding (2 kPa·s), yogurt (6 kPa·s) and slush ice (10 kPa·s). Six healthy volunteers swallowed 5 and 10 mL of boluses multiple times. RESULTS: The pressure amplitude did not increase with the bolus viscosity nor with the bolus volume whereas the axial force increased marginally with bolus volume (0.1 > P > 0.05). Both techniques showed that contraction duration increased with bolus viscosity (P < 0.01). Association was found between axial force and pressure but the association became weaker withincreasing viscosity. The pressure amplitude did not increase with the viscosity or bolus volume whereas the axial force increased marginally with the bolus size. CONCLUSION: This indicates a discrepancy between the physiological functions that can be recorded with axial force measurements and pressure measurements.
AIM: To study the effect of viscosity on axial force in the esophagus during primary peristalsis using a newly validated impedance-based axial force recording technique. METHODS: A probe able to simultaneously measure both axial force and manometry was positioned above the lower esophageal sphincter. Potable tap water and three thickened fluids were used to create boluses of different viscosities. Water has a viscosity of 1 mPa·s. The three thickened fluids were made with different concentrations of Clinutren Instant thickener. The viscous fluids were in appearance comparable to pudding (2 kPa·s), yogurt (6 kPa·s) and slush ice (10 kPa·s). Six healthy volunteers swallowed 5 and 10 mL of boluses multiple times. RESULTS: The pressure amplitude did not increase with the bolus viscosity nor with the bolus volume whereas the axial force increased marginally with bolus volume (0.1 P 0.05). Both techniques showed that contraction duration increased with bolus viscosity (P 0.01). Association was found between axial force and pressure but the association became weaker withincreasing viscosity. The pressure amplitude did not increase with the viscosity or bolus volume whereas the axial force increased marginally with the bolus size. CONCLUSION: This indicates a discrepancy between the physiological functions that can be recorded with axial force measurements and pressure measurements.