摘要
The fossil fuel consumption and pollutant emissions in a coal fired fluidized bed boiler could be reduced by biomass pyrolysis gas reburning.The influence of three kinds of biomass pyrolysis gases on the emission of N_2O in a laboratory scale fluidized bed was investigated using the mechanism of GRI3.0 in this paper.The results showed that:the effect of sawdust pyrolysis gas reburning on N_2O was more significant than that of rice husk and orange peel under the same conditions;the increase of initial oxygen content from 1% to 8% in flue gas would restrain the decomposition of N_2O;the N_2O decomposition was enhanced by increasing reaction temperature from 1073.15 K to 1323.15 K,and the decomposition rate may reach 99% at 1223.15 K.
The fossil fuel consumption and pollutant emissions in a coal fired fluidized bed boiler could be reduced by biomass pyrolysis gas reburning. The influence of three kinds of biomass pyrolysis gases on the emission of N2O in a laboratory scale fluidized bed was investigated using the mechanism of GRI3.0 in this paper. The results showed that: the effect of sawdust pyrolysis gas reburning on N2O was more significant than that of rice husk and orange peel under the same conditions; the increase of initial oxygen content from 1% to 8% in flue gas would restrain the decomposition of N2O; the N2O decomposition was enhanced by increasing reaction temperature from 1073.15 K to 1323.15 K, and the decomposition rate may reach 99% at 1223.15 K.
基金
supported by the National Natural Science Foundation of China (50976032)
the National High Technology Research and Development of China (2008AA05Z302)
the National Basic Research Program of China (2009CB219801)
the Key Project of Ministry of Education of China (108033,107119)
Nature Science Foundation of Beijing (3101001)
Fundamental Research Funds for the Central Universities (09ZG03)
Doctoral Program of North China Electric Power University (200822015)