期刊文献+

基于时间序列聚类和ARMA模型的检索量预测 被引量:12

Prediction of Search Data Volume Based on Time-Series Clustering and ARMA Models
下载PDF
导出
摘要 为了通过预测分析检索量数据来指导商家调整产品开发及经营策略,将检索量数据组织为时间序列,对其用自回归滑动平均(ARMA)模型进行建模预测.先将时间序列进行聚类,仅对聚类中心序列进行ARMA模型识别,同类序列用该模型进行近似建模预测;经过数据预处理、相似性分析、基于相似度的聚类、时间序列预测等过程,得到检索量数据的预测值,并将其与检索量的实际值做比较.结果表明,用同一个ARMA模型拟合相似时间序列的方法具有可行性,且有较高的预测准确率.从聚类结果还可看出,同品牌产品的检索量数据趋于聚成一类,这为检索词关系的挖掘提供了参考. In order to guide the adjustment of product development and business strategy by predicting and analyzing the search data volume,the data of search volume are organized into time series that is modeled and predicted using the autoregressive moving average(ARMA) models.Then,the set of time series is modeled by clustering;the cluster centers are modeled using ARMA models;and the same-class series is fitted with the models approximately to obtain the predicted values.Moreover,after such operations as data preprocessing,similarity analysis,similarity-based clustering and time-series prediction,the search data volume is predicted and is compared with the actual one.Experimental results show that it is feasible and accurate to model similar time series with the same ARMA model.In addition,clustering results indicate that the search data volume of the products with the same brand tends to be clustered together,which provides a reference for the relationship mining of search terms.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第4期21-25,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60973076 61073127) 哈尔滨工业大学中央高校基本科研业务费专项资金资助项目(HIT.NSRIF.2010045)
关键词 时间序列 检索量 ARMA模型 动态时间弯曲距离 k-medoid算法 time series search data volume ARMA model dynamic time-warping distance k-medoid algorithm
  • 相关文献

参考文献11

  • 1Weigend A S, Gershenfeld N A. Time series prediction: forecasting the future and understanding the past [ C ]// Proc of the NATO Advanced Research Workshop on Comparative Time Series Analysis. MA: Addison-Wesley, 1994.
  • 2Taken S F. Detecting strange attractors in turbulence [ J ]. Lecture Notes in Mathematics,1981,898(2) :366-381.
  • 3Maguire L P, Roche B, Mcginnity T M. Predicting a chaotic time series using a fuzzy neural network [ J]. Information Sciences, 1998,112( 1/2/3/4 ) : 125-136.
  • 4Han Jiawei,Kamber M.数据挖掘:概念与技术[M].范明,孟小峰,译.北京:机械工业出版社,2000.
  • 5Kaufman L, Rousseeuw P J. Clustering by means of medoids [ C ]//Proc of Statistical Data Analysis Based on the L1-Norm and Related Methods. Amsterdam: North- Holland, 1987:405-416.
  • 6Davies D L, Bouldin D W. A cluster separation measure [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1979,1 (4) :224- 227.
  • 7Berndt D J, Clifford J. Using dynamic time warp to find patterns in time series [ C]//Proc of AAAI-94 Workshop on Knowledge Discovery in Database. Washington: AAAI Press, 1994:359-370.
  • 8Keogh E J, Pazzani M J. Derivative dynamic time warping [ C]//Proc of the First SIAM International Conference on Data Mining. Chicago : SDM ,2001.
  • 9Das G, Lin K I, Mannila H. Rule discovery from time series [ C ]// Proc of the 3rd International Conference of Knowledge Discovery and Data Mining. New York:ACM SIGKDD, 1998 : 16-22.
  • 10Dimitriadou E, Dolnicar S, Weingessel A. An examination of indexes for determining the number of cluster in binary data sets [ J]. Psychomctrika, 2002,67 (1) :137- 160.

同被引文献87

引证文献12

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部