期刊文献+

动态评价粒子群优化及风电场微观选址 被引量:7

Dynamic evaluation based particle swarm optimization and wind farm micrositing
下载PDF
导出
摘要 提出了动态评价方法处理一类约束优化问题.将目标函数值和约束违反量进行动态归一化处理,再进行加权求和,动态评价解的优化性能.不仅解决了惩罚因子确定困难的问题,而且增加了优化算法的多样性,提高了优化算法搜索全局最优解的能力.将动态评价方法引入粒子群算法,求解风电场微观选址优化问题.仿真结果表明,动态评价方法提高了风电场发电量和风能利用效率.此外,该方法可广泛应用于其他优化算法以求解约束优化问题. A dynamic fitness evaluation method is proposed to handle constrained optimization problems.The values of the objective and the constraint violation are both dynamically normalized and summed up with corresponding weights to evaluate the fitness values.The proposed method not only overcomes the difficulty in tuning the coefficients of penalty function,but also increases the diversity and global search ability of the optimization algorithm.It is applied to the particle swarm optimization algorithm to solve the optimization problem in micrositing a wind farm.Simulation results demonstrate that the power generated by the wind farm is increased,so is the efficiency of wind energy exploitation.Moreover,the proposed method can be widely applied to other optimization algorithms to solve constrained optimization problems.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第4期449-456,共8页 Control Theory & Applications
基金 国家"863"计划资助项目(2007AA05Z426) 国家自然科学基金资助项目(61075064)
关键词 动态评价 粒子群优化算法 风电场微观选址 dynamic evaluation particle swarm optimization algorithm micrositing of wind farm
  • 相关文献

参考文献14

  • 1COELLO COELLO C A. Theoretical and numerical constraint- handling techniques used with evolutionary algorithms: a survey of the state of the art[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(11/12): 1245- 1287.
  • 2MOSETTI G, POLONI C, DIVIACCO B. Optimization of wind turbine positioning in large wind farms by means of a genetic algorithm[J]. Wind Engineering Industrial Aerodynamic, 1994, 51 ( 1): 105 - 116.
  • 3GRADY S A, HUSSAINI M Y, ABDULLAH M M. Placement of wind turbines using genetic algorithms[J]. Renewable Energy, 2005, 30(2): 259 - 270.
  • 4WAN C Q, WANG J, YANG G, et al. Optimal micro-siting of wind turbines by genetic algorithms based on improved wind and turbine models[C] //The 48th IEEE Conference on Decision and Control Held Jointly with 2009 28th Chinese Control Conference. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2009:5092 - 5096.
  • 5WAN C Q, WANG J, YANG G, et al. Optimal siting of wind turbines using real-coded genetic algorithms[C]//Proceedings of European Wind Energy Association Conference and Exhibition. Marseille, France, 2009. http:llwww.ewec2OO9proceedings.infol proceedings/index.php.
  • 6KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proceedings of the 1995 IEEE International Conference on Neural Networks- Part 4(of6). Piscataway: IEEE, 1995, 4: 1942- 1948.
  • 7EBERHART R C, SHI Y. Particle swarm optimization: developments, applications and resources[C] I/Proceedings of the IEEE Con- ference on Evolutionary Computation. Piscataway: IEEE, 2001, 1: 81 - 86.
  • 8SCHUTTE J F, GROENWOLD A A. A study of global optimization using particle swarms[J]. Global Optimization, 2005, 31(1): 93 - 108.
  • 9SHI Y, EBERHART R C. A modified particle swarm optimizer[C] //Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway: IEEE, 1998:69 - 73.
  • 10EBERHART R C, SHI Y. Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the IEEE Conference on Evolutionary Computation. Piscataway: IEEE, 2000, 1:84 - 88.

同被引文献162

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部