期刊文献+

评估诊断证据可靠性的信息融合故障诊断方法 被引量:14

Information-fusion method for fault diagnosis based on reliability evaluation of evidence
下载PDF
导出
摘要 在基于证据理论的信息融合故障诊断方法中,诊断证据的可靠性高低将会直接影响诊断结果的准确性.而现有的大多数方法并没有全面地评估证据的可靠性,从而常常导致融合诊断结果的不准确.决定证据可靠性的因素主要有传感器的精度与证据获取方法的性能,以及传感器运行环境中的不确定性因素,可将它们分别理解为静态和动态因素.本文利用基于Pignisti。的指标函数优化算法获得静态折扣因子,用其对原证据进行修正;接着提出基于Pignistic向量的证据相似度度量方法获取动态折扣因子,用其对证据进行再次修正,并利用Dempster组合规则融合经两次修正后的证据,得到诊断结果.最后,通过在多功能柔性转子试验台上的实验,验证了所提方法的有效性. In fault diagnosis methods based on evidence theory with information fusion, the reliabilities of evidences will affect the accuracy of diagnosis results. However, most existing fusion diagnosis methods do not take the reliabilities of the evidences into account comprehensively. The main factors which determine the reliability of evidence are the precision of individual sensor and the performance of the method in obtaining the evidence, as well as the uncertainties in the observation environment. They are considered static factors and dynamic factors. The original evidence is first modified by a static discount-factor obtained by optimizing the indication function of Pignistic probability measure. This result is further modified by a dynamic discount-factor which is obtained by applying the measurement method to evidence similarity in Pignistic vectors. Double-modified evidences are combined by Dempster combination rule to obtain the final diagnosis results. Experiments on the multi-functional flexible rotor-testing validate the effectiveness of the proposed method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2011年第4期504-510,共7页 Control Theory & Applications
基金 国家自然科学基金资助项目(61004070 60934009 60772006 60874105) 浙江省自然科学基金资助项目(Y1080422) 中国博士后科学基金资助项目(20100470353)
关键词 故障诊断 信息融合 证据理论 传感器可靠性 折扣因子 fault diagnosis information fusion evidence theory sensor reliability discounting factor
  • 相关文献

参考文献15

  • 1藤召胜,罗隆福,童调生.智能检测系统与信息融合[M].北京:机械工业出版社,2000.
  • 2GUO H W, SHI W K, DENG Y. Evaluating sensor reliability in classification problems based on evidence theory[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 2006, 36(5): 970 - 981.
  • 3SHAFER G. A Mathematical Theory of Evidence[M]. Princeton: Princeton University Press, 1976.
  • 4ELOUEDI Z, MELLOULI K, SMETS P. The evaluation of sensors' reliability and their tuning for multisensor data fusion within the transferable belief model[C]//Proceedings of the Sixth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty. New York: Springer, 2001 : 350 - 361.
  • 5ZOUHAL L M, DENOEUX T. An evidence theoretic k-nn rule with parameter optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 1998, 28(2): 263- 271.
  • 6ELOUEDI Z, MELLOULI K, SMETS P. Assessing sensor reliability for multi-sensor data fusion within the transferable belief model[J].IEEE Transactions on Systems, Man. and Cybernetics, Part B, 2004, 34(1): 782 - 787.
  • 7SMETS P. Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[J]. International Journal of Approximate Reasoning, 1993, 9(1): 1 35.
  • 8SMETS P. Decision making in the TBM: the necessity of the pignistic transformation[J]. International Journal of Approximate Reasoning, 2005, 38(2): 133 - 147.
  • 9SMETS P, KENNES R. The transferable belief model[J]. International Journal of Artificial Intelligence, 1994, 66(2): 191 - 243.
  • 10柳毅,高晓光,卢广山,陈红林,李相民.基于加权证据组合的多传感器目标识别[J].系统工程与电子技术,2003,25(12):1475-1477. 被引量:25

二级参考文献27

共引文献122

同被引文献130

引证文献14

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部