期刊文献+

深度优先遍历Δ-tree的非递归KNN查询 被引量:1

Non-recursive KNN search using depth-first traversal of Δ-tree
下载PDF
导出
摘要 kNN查询是高维数据库中最重要的操作之一,尽管它在数据库研究中得到了极大的关注,但很少有关于主存数据库kNN查询的工作。充分利用kNN查询自身的特点,基于高效的主存索引Δ-tree设计了一种新的kNN查询算法NR_DF_knn_Search,该算法采用非递归方式深度优先搜索Δ-tree中距离查询点较近的叶子节点,能够快速找到较优的kNN候选,更新修剪距离,加大剪枝力度,缩小搜索空间,从而提高kNN查询效率。通过实验对该算法进行了估价,结果证明该算法是有效的。 k Nearest Neighbor(kNN) search is one of the most important operations in high databases.Although it has received considerable attention in the database literature, there is little prior work on kNN retrieval in main-memory databases. Fully utilizing its own characteristics of kNN query, a new kNN search algorithm is proposed, called NR_ DF _knn _Search, for efficient main memory index A-tree.This algorithm searches the leaf nodes of A-tree that nearer the query point by non-recursive depth first manner, can quickly fred near optimal kNN candidates, update pruning distance, increase prune force, narrow the search space, so it improves kNN query efficiency.Extensive experiments are conducted to evaluate the NR DF knn Search algorithm,and report results demonstrate its effectiveness.
作者 刘艳 郝忠孝
出处 《计算机工程与应用》 CSCD 北大核心 2011年第15期6-8,28,共4页 Computer Engineering and Applications
基金 黑龙江省自然科学基金No.F200601~~
关键词 高维索引 主存kNN查询 非递归 最近邻查询 深度优先搜索 high-dimensional index main-memory kNN search non-recursive Nearest Neighbor(NN) search depth-first search
  • 相关文献

参考文献2

二级参考文献21

  • 1Shim K, Srikant R, Agrawal R. High-dimensional similarity joins [C] //Proc of the 13th Int Conf on Data Engineering. Los Alamitos, CA.. IEEE Computer Society, 1997:301-311.
  • 2Huang Y W, Jing N, Rundensteiner E A. Spatial joins using r-trees: Breadth-first traversal with global optimizations [C] //Proc of the 23rd Int Conf on Very Large Data Bases. San Francisco, CA: Morgan Kaufmann, 1997:396-405.
  • 3Bohm C, Kriegel H-P. A cost model and index architecture for the similarity join [C] //Proc of the Int Conf on Data Engineering. Los Alamitos. CA.. IEEE Computer Society, 2001 : 411-420.
  • 4Sharer J C, Agrawal R. Parallel algorithms for high- dimensional similarity joins for data mining applications [C] //Proe of the 23rd Int Conf on Very Large Data Bases (VLDB'97). San Francisco, CA: Morgan Kaufmann, 1997: 176-185.
  • 5Koudas N, Sevcik K C. High dimensional similarity joins: Algorithms and performance evaluation [C] //Proc of the 14th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 1998:466-475.
  • 6Bohm C, Braunmuller B, Krebs F, et al. Epsiton grid order: An algorithm for the similarity join on massive high dimensional data [C] //Proc of the 2001 ACM SIGMOD Int Conf on Management of data. New York: ACM, 2001 : 379- 388.
  • 7Kalashnikov D V, Prabhakar S. Similarity join for low- and high-dimensional data [C] //Proc of the 8th lnt Conf on Database Systems for Advanced Applications (DASFAA 2003). Los Alamitos, CA: IEEE Computer Society, 2003.
  • 8Jolliffe I T. Principal Component Analysis [M]. Berlin: Springer, 1986.
  • 9Cui B, Ooi B C, Su J W, et al. Indexing high-dimensional data for efficient inmemory similarity seareh [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17(3): 339-353.
  • 10Berchtold S, Bohm C, Keim D, et al. A cost model for nearest neighbor search in high-dimensional data space[C]// Proe of the 16th ACM PODS Symp on Principles of Database Systems. New York: ACM, 1997:78-86.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部