期刊文献+

基于韵律特征的SVM说话人确认 被引量:2

SVM speaker verification based on prosodic feature
下载PDF
导出
摘要 提出了一种基于韵律特征和SVM的文本无关说话人确认系统。采用小波分析方法,从语音信号的MFCC、F0和能量轨迹中提取出超音段韵律特征,通过实验研究三者的韵律特征在特征层的最佳互补融合,得到信号的韵律特征PMFCCFE,用韵律特征的GMM均值超矢量作为参数训练目标话者的SVM模型,以更有效地区分目标话者和冒认话者。在NIST068side-1side数据库的实验表明,以短时倒谱参数的GMM-UBM系统为基准,超音段韵律特征的GMM-SVM系统的EER相对下降了57.9,MinDCF相对下降了41.4。 A text-independent speaker verification method based on prosodic features and SVM model is proposed.With wavelet analysis, prosodic features are extracted from MFCC, F0 and energy contours respectively, these complementary features are fused at feature level to yield a most effective feature PMFCCFE, GMM mean supervectors of PMFCCFE are used to train SVM models to discriminates target speakers and imposters more effectively.The experiments conducted on the 2006 NIST 8side-lside subset show that the prosodic GMM-SVM system relatively improves the performance of the verification system by 57.9% in EER,41.4% in MinDCF,compared with the MFCC-based GMM-UBM system.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第15期148-151,224,共5页 Computer Engineering and Applications
关键词 韵律特征 高斯混合模型(GMM)超矢量 支持向量机 文本无关说话人确认 prosodic features Gaussian Mixture Model (GMM) supervector Support Vector Machine (SVM) text-independent speaker verification
  • 相关文献

参考文献12

  • 1Thyme-Gobbel A,Hutchins S.On using prosodic cues in automatic language identification[C] //Proceedings of 4th International Conference on Spoken Language Processing.Philadelphia,USA:IEEE,1996:1768-1771.
  • 2Sonmez K,Shriberg E,Heck L,et al.Modeling dynamic prosodic variation for speaker verification[C] //5th International Conference on Spoken Language Processing.Sydney,Australia:Australian Speech Science and Technology Association,1998:3189-3192.
  • 3Adami A,Mihaescu R,Reynolds D.Modeling prosodic dynamics for speaker recognition[C] //2003 IEEE International Conference on Accoustics,Speech,and Signal Processing.Hong Kong,China:IEEE,2003:788-791.
  • 4Dehak N,Dumouchel P,Kenny P.Prosodic features with joint factor analysis for speaker verification[J].IEEE Transactions on Audio,Speech and Language Processing,2007,15(7):2095-2103.
  • 5Reynolds D,Quatieri T,Dunn R.Speaker verification using adapted G-aussian mixture modeis[J].Digital Signal Processing:A Review Journal,2000,10(1):19-41.
  • 6Wan V,Renals S.Speaker verification using sequence discriminant support vector machines[J].IEEE Transactions on Speech and Audio Processing,2005,13(2):203-210.
  • 7Longworth C,Gales M.Derivative and parametric kernels for speaker verification[C] //8th Annual Conference of the International Speech Communication Association.Antwerp,Belgium:ISCA,2007:849-852.
  • 8Boersma P,Weenink D.Praat,a system for doing phonetics by computer[J].Glot International,2001,5:341-345.
  • 9Xu D,Dai B,Xu M,et al.Pitch prosodic feature for speaker verification[C] //International Workshop on Computer Science and Engineering.Muscow,Russia:World Academic Union-World Academic Press,2008:388-392.
  • 10Campbell W,Sturim D,Reynolds D.Support vector machines using GMM supervectors for speaker verification[J].IEEE Signal Processing Letters,2006,13 (5):308-311.

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部