期刊文献+

一种挖掘加权频繁项集的改进算法 被引量:4

Improved algorithm for mining weighted frequent itemsets
下载PDF
导出
摘要 分析了New-Apriori和MWFI(Mining Weighted Frequent Itemsets)算法之不足,提出了一种挖掘加权频繁项集的New-MWFI算法。该算法按属性的权值对事务进行分类,并依次求出每个类别内的加权频繁项集。由于每个类别内的频繁项集满足Apriori性质,因而可以利用Apriori算法或其他改进算法进行挖掘,从而克服了原来算法的不合理和效率低下的缺陷。实验表明该算法能更有效地从数据集中挖掘出加权频繁项集。 The shortages of the New-Apriori and Mining Weighted Frequent Itemsets (MWFI) are analyzed, and the New-MWFI algorithm for mining weighted frequent itemsets is proposed.In this algorithm the transactions are classified according to the item's weight and the weighted frequent itemsets are mined within each category in turn.Since the frequent itemsets of each category satisfy the Apriori's property, the Apriori algorithm or other improved algorithms can be used, thus the deficiencies of the original algorithms can be overcome successfully.Experiments show that the new algorithm is more effective in mining the weighted frequent itemsets from the dataset.
出处 《计算机工程与应用》 CSCD 北大核心 2011年第15期165-167,共3页 Computer Engineering and Applications
关键词 数据挖掘 加权关联规则 加权频繁项集 New-MWFI算法 data mining weighted association rules weighted frequent itemsets New-MWFI algorithm
  • 相关文献

参考文献7

二级参考文献20

  • 1宫雨,武森,尹阿东,高学东.加权关联规则的改进算法[J].计算机工程与应用,2004,40(22):177-179. 被引量:9
  • 2周晓云,孙志挥,倪巍伟.一种基于加权的高效关联规则挖掘算法的设计与实现[J].计算机工程与应用,2004,40(20):17-19. 被引量:10
  • 3尹群,王丽珍,田启明.一种基于概率的加权关联规则挖掘算法[J].计算机应用,2005,25(4):805-807. 被引量:18
  • 4中国统计局.中国统计年鉴[M].北京:中国统计出版社,1987..
  • 5R Agrawal,R Srikant.Fast algorithms for mining association[C].In: Proc of the 20th Int'l Conf on Very Large Database,1994:487-499.
  • 6C H Cai,W C Fu Ada,C H Cheng et al.Mining association rules with weighted items[C].In:Proc of the Int'l Database Engineering and Applications Symposium, 1998:68-77.
  • 7R Srikant,Q Vu,R Agrawal.Mining association rules with item constraints[C].In:Proc of the Third Int'l Conf in knowledge Discovery in Databases and Data Mining,1997:67-73.
  • 8Feng Tao, Fionn Murtagh, Mohsen Farid.Weighted Association Rule Mining using Weighted Support and Significance Framework[C].In: Proc of the 9th ACM SIGKDD international conference on Knowledge discovery and data mining,2003:661-666.
  • 9范明 孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 10中国统计局,中国统计年鉴,1987年

共引文献124

同被引文献35

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部