期刊文献+

山区河道溃坝水流数值模拟 被引量:3

Simulation of Dam Break Flow in Mountain River
下载PDF
导出
摘要 为了研究溃坝水流在山区河道中的传播,采用SPH方法来求解2维浅水方程,建立了溃坝水流数值模型。SPH方法由于是拉格朗日法,在处理对流主导的问题具有很好的稳定性与精度,且是无网格方法,无需划分网格和判定干湿网格,很好地解决了山区河道溃坝水流流速急,水位变幅大,动边界变化频繁,计算区域难确定等问题。采用该模型模拟了山区河道的溃坝水流,初步再现了溃坝水流的流动过程,分析表明模拟结果是合理的,因而采用SPH方法对溃坝水流进行模拟是可行的。 In order to study the dam break flow in mountain river,SPH method was used to solve the dam break flow model based on the two-dimensional shallow water equations.Since the Lagrangian SPH method has good stability and accuracy in dealing with convection dominated problems and is meshfree method,there is no need to divide the grid and to determine the wet-dry grid,therefore it well resolves the issues that mountain river dam break flow velocity is acute,water level range is large,moving boundary changes frequently,and the calculation region is difficult to determine.The model was used to simulate the mountain river dam break flow and preliminarily represents the dam break flow process.The analysis showed that the simulation results are reasonable and the SPH method is feasible to simulate the dam break flow.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第3期7-11,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 国家"973"计划资助项目(2011CB409903) 国家自然科学基金资助项目(50739002)
关键词 山区河流 浅水流 SPH 溃坝 mountain river shallow water SPH dam break
  • 相关文献

参考文献10

  • 1Erpieum S, Dewals B J, Archambeau P, et al.Dambreak flow computation based on an efficient flux vector splitting [ J ]. Journal of Computational and Applied Mathematics, 2010 (234) :2143 -2151.
  • 2Gottardi G, Venutelli M. Central scheme for two-dimensional dam-break flow simulation [ J ]. Advances in Water Resources,2004 (27) : 259 - 268.
  • 3Gallegos H A, Schubert J E, Sanders B F. Two-dimensional, high-resolution modeling of urban dam-break flooding: A case study of Baldwin Hills, California [ J ]. Advances in Water Resources,2009 (32) : 1323 - 1335.
  • 4Junqiang Xia, Binliang Lin, Falconer R A, et al. Modelling dam-break flows over mobile beds using a 2D coupled approach [J]. Advances in Water Resources,2010 (33) : 171 - 183.
  • 5Dawson C N, Martinez-Canales M L. A characteristic-Galerkin approximation to a system of shallow water equations [ J ]. Numerical Mathematic,2000 (86) : 239 - 256.
  • 6Paul Carling, Ignacio Villanueva, Juergen Herget. Unsteady 1D and 2D hydraulic models with ice dam break for Quaternary megaflood, Altai Mountains, southern Siberia [ J ]. Global and Planetary Change,2010(4) :24 -34.
  • 7Monaghan J J. Smoothed particle hydrodynamics simulations of shear flow[ J ]. Mon Not R Astro Soc, 2006 ( 365 ) : 199 - 213.
  • 8Edmond Y M Lo, Songdong Shao. Simulation of near-shore solitary wave mechanics by an incompressible SPH method [ J ]. Applied Ocean Research, 2002 (24) :275 - 286.
  • 9Miguel M C, Bonet J. A corrected smooth particle hydrody- namics formulation of the shallow-water equations [ J ]. Computers and Structures ,2005 ( 83 ) : 1396 - 1410.
  • 10Stoker J J. Water wave [ M ]. New York: Inter Science, 1965.

同被引文献28

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部