期刊文献+

矿渣聚丙烯纤维混凝土的抗压性能 被引量:4

Compression of Polypropylene Fiber Reinforced Concrete Containing Slag
下载PDF
导出
摘要 为研究矿渣聚丙烯纤维混凝土的抗压性能,采用Φ101.6 mm×203.2 mm圆柱型试样,应用LVDT计算机自动数据传输采集系统测试了矿渣聚丙烯纤维混凝土试样的轴心抗压强度、弹性模量和泊松比,进行了SEM电镜扫描分析。结果表明,聚丙烯纤维降低了混凝土抗压强度和弹性模量,增加了泊松比;然而,矿渣提高了混凝土的抗压强度和弹性模量;聚羧酸系超塑化剂与水泥的相容性较好;聚丙烯纤维、矿渣和聚羧酸系超塑化剂的复合效应明显。基于实验数据提出弹性模量和抗压强度之间的关系式Ec=5 103fc′0.433 3,经误差分析,适用于矿渣聚丙烯纤维混凝土。电镜扫描测试分析表明,配比不同的混凝土产生了不同形状和性能的水化物,对混凝土宏观抗压强度影响显著。 Compressive properties of concrete containing Ground Granulated Blast Furnace Slag(GGBFS) reinforced by polypropylene fibers were investigated on Φ101.6 mm×203.2 mm cylindrical specimens.Parameters under investigation were axial compressive strength,static elastic modulus,and poisson's ratio.The instrumentation used comprised a compression testing machine,a compressometer,bearing plates,a LVDT setup connected with a computer data acquisition system,and data transfer devices.Results showed that polypropylene fibers decrease the compressive strength and static elastic modulus but increase poission's ratio,while slag improves the compressive strength and static elastic modulus.The compatibility of acid polycarboxylate superplasticizer with cement is good.The Composition effects of polypropylene fibers,slag and acid polycarboxylate superplasticizer are significant.A new constitutive formulation was proposed based on experimental data,which is more suitable for polypropylene fiber reinforced concrete containing slag to describe the relationship between static elastic modulus and compressive strength.Scanning Electron Microscope(SEM) micrographs revealed that the resulted hydrated products have different morphologies,which influences the compression properties.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第3期49-55,共7页 Journal of Sichuan University (Engineering Science Edition)
基金 国家科技支撑计划资助项目(2006BAD11B03) 陕西省自然科学基金资助项目(SJ08E111) 2007西北农林科技大学归国人才基金资助项目(011404)
关键词 复合材料 混凝土 抗压强度 弹性模量 composites concrete compressive strength static modulus of elasticity
  • 相关文献

参考文献21

  • 1Haddad R H,Al-Saleh R J,Al-Akhras N M. Effect of elevated temperature on bond between steel reinforcement and fiber reinforced concrete [ J ]. Fire Safety Journal, 2008,43 (5) :334 -343.
  • 2Song P S, Hwang S, Sheu B C. Strength properties of nylonand polypropylene-fiber-reinforced concretes [ J ]. Cement and Concrete Research,2005,35 ( 8 ) : 1546 - 1550.
  • 3Lawrence P, Cyr M, Ringot E. Mineral admixtures in mortars effect of type, amount and fineness of fine constituents on compressive strength [ J ]. Cement and Concrete Research, 2005,35(6) :1092 - 1105.
  • 4Topcu,I B, Saridemir M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic[ J]. Computational Materials Science, 2008, 41(3) :305 -311.
  • 5Pauw A. Static modulus of elasticity of concrete as affected by density[J]. Aci Journal Proceedings,1960,57(6):679-688.
  • 6ACI Committee 318. Building code requirements for structural concrete ( ACI 318--05 ) and commentary ( ACI 318 R--05 ) [ S ]. American Concrete Institute, Detroit,2005:99.
  • 7ACI 363R--84, State-of-the-art report on high-strength concrete[ S]. ACI Mannual of Concrete Practice, Part 1. American Concrete Institute, Detroit, 1993:77.
  • 8ACI Committee 318. ACI 318--83, Building code requirements for reinforced concrete [ S ]. American Concrete Insti- tute, Detroit, 1983 : 118.
  • 9Shah S P,Ahmad S H. Structural properties of high strength concrete and its implications for precast prestressed concrete [J]. Journal of the Prestressed Concrete Institute, 1985,30 (6) :92 - 119.
  • 10Oluokun F A, Burdette E G, Deatherage J H. Elastic modulus, Poisson's ratio, and compressive stength relationships at early ages [ J ]. ACI Meterials Journal, 1992,89 : 3 - 10.

二级参考文献43

  • 1徐松林,郭庆海,唐志平,胥建龙.冲击荷载作用下脆性孔洞材料崩塌数值模拟分析[J].岩石力学与工程学报,2005,24(6):955-962. 被引量:5
  • 2孙海燕,龚爱民,彭玉林.聚丙烯纤维混凝土性能试验研究[J].云南农业大学学报,2007,22(1):155-158. 被引量:32
  • 3严少华.[D].南京:解放军理工大学,2001,43-67.
  • 4Watstein D. Effect of straining rate on the compressive strength and elastic properties of concrete [J]. ACI J Proceedings, 1953, 49(8): 729-744.
  • 5Banthia N, Mindess S, Trottier J. Impact resistance of steel fiber reinforced concrete [J]. ACIMaterials Journal, 1996,93: 472-479.
  • 6Bischoff P H, Pery S H. Compressive behavior of concrete at high strain rates [J]. Material and Structure, 1991, 144(24): 425-450.
  • 7Bessinger B A, Liu Z, Cook N G W, etal. A new fracturing mechanism for granular media [J]. Geophys Res Lett, 1997,24: 2605-2608.
  • 8Haimson B C, Song I. Laboratory study of borehole breakouts in two Berea sandstones reveals dramatically different failure mechanisms(Abstract) [J]. Eos Trans AGU, 1997,78(46): F710.
  • 9Olsson W A. Theoretical and experimental investigation of compaction bands in porous rock [J]. Journal of GeophysicalResearch, 1999, 104(B4): 7219-7228.
  • 10Issen K A, Rudinicki J W. Conditions for compaction bands in porous rock [J]. Journal of Geophysical Research, 2000,105(B9): 21529-21536.

共引文献100

同被引文献37

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部