期刊文献+

基于集成学习方法的蛋白质相互作用预测 被引量:1

Prediction of Protein-protein Interactions Based on Ensemble Learning
下载PDF
导出
摘要 针对蛋白质相互作用的预测问题,提出了集成学习的方法。该方法使用人工神经网络和支持向量机为成员分类器的集成学习方法,并分别用自协方差编码方式和二肽组成来表示蛋白质序列的特征集合,预测的准确率和ROC曲线面积分别达到92.16%、94.38%和0.972 5、0.981 5。通过对成员分类器、集成学习方法以及集成学习方法之间的预测效果进行比较,结果表明,集成学习方法可获得更优的预测效果,并能有效提高预测精度,避免采样学习带来的不稳定性。 To effectively predict the protein-protein interactions,an ensemble learning with artificial neural network and supporting vector machine as the individuals was used,and the feature selection of protein sequence was indicated by auto covariance and dipeptide composition.The prediction accuracy and AUC reached 92.16%,94.38% and 0.972 5,0.981 5,respectively.A comparison among artificial neural network,supporting vector machine and ensemble learning showed that the ensemble learning revealed more superior performance than the others and can improve the prediction accuracy while avoiding the instability of prediction caused by sampling learning.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第3期68-75,共8页 Journal of Sichuan University (Engineering Science Edition)
基金 国家自然科学基金资助项目(20972103 20905054)
关键词 集成学习 人工神经网络 支持向量机 蛋白质相互作用 ensemble learning artificial neural network support vector machine protein-protein interactions
  • 相关文献

参考文献32

  • 1Roy S, Martinez D, Platero H, et al. Exploiting amino acid composition for predicting protein-protein interactions [ J ]. PLoS ONE ,2009,4( 11 ) :7813 - 7825.
  • 2Guo Y, Yu L, Wen Z, et al. Using support vector machine combined with auto covariance to predict protein-protein in- teractions from protein sequences [ J ]. Nucleic Acids Research,2008,36 (9) : 3025 - 3030.
  • 3Martin S, Roe D, Faulon J. Predicting protein-protein interactions using signature products [ J ]. Bioinformatics, 2005, 21(2) :218 -226.
  • 4Shen J, Zhang J, Luo X, et al. Predicting protein Cprotein interactions based only on sequences information[ C]//Proceedings of the National Academy of Sciences. 2007, 104 ( 11 ) :4337 -4341.
  • 5Zhang L, Wong S, King O, et al. Predicting co-complexed protein pairs using genomic and proteomic data integration [ J ]. BMC Bioinformatics ,2004,5 ( 1 ) : 38 - 52.
  • 6Fariselli P, Pazos F, Valencia A, et al. Prediction of protein cprotein interaction sites in heterocomplexes with neural networks [ J ]. European Journal of Biochemistry, 2002, 269 (5) :1356 - 1361.
  • 7Liu L, Cai Y, Lu W, et al. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection[ J]. Biochemical and Biophysical Research Communications,2009,380(2) :318 - 322.
  • 8Chen X, Liu M. Prediction of protein-protein interactions using random decision forest framework [ J ]. Bioinformatics, 2005,21 (24) :4394 -4400.
  • 9Shoemaker B, Panchenko A. Deciphering protein-protein interactions. Part II. Computational methods to predict protein and domain interaction partners [ J ]. PLoS Comput Biol, 2007,3(4) :43 -49.
  • 10Banfield R, Hall L, Bowyer K,et al. A comparison of decision tree ensemble creation techniques [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (1) :173 - 180.

同被引文献4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部