期刊文献+

基于Colpitts振荡器模型的网格涡卷混沌系统 被引量:3

Grid-scroll Chaotic System Based on Colpitts Oscillator Model
下载PDF
导出
摘要 为了在3阶Colpitts振荡器模型框架下获得网格涡卷混沌吸引子,基于混沌吸引子形成机理,提出了通过引入2个单位锯齿波函数改造模型方程生成网格涡卷混沌系统的方法,使改造后的3维系统形成网格分布的指数2平衡点,从而获得了(2M+1)×(2N+1)网格涡卷混沌吸引子。采用常规的动力学分析方法,研究了该系统的动力学特性,并作离散化处理后基于微控制器进行了数字电路实现和相应的实验验证,实验输出与数值仿真结果一致,由此说明了在Colpitts振荡器模型框架下生成网格涡卷混沌吸引子的可行性和实现性。 To obtain grid-scroll chaotic attractor under the frame of the three-order Colpitts oscillator model,based on the formation mechanism of chaotic attractor,an approach for generating a grid-scroll chaotic system was presented by introducing two unit sawtooth wave functions to modify the model equations from which the index-2 equilibrium points with grid distribution can be formed by the modified three-dimensional system and a(2M+1)×(2N+1)-grid scroll chaotic attractor was evolved.By using conventional dynamical analysis methods,the dynamical behaviors of the proposed system were analyzed.With the help of discretization,digital circuit implementation and corresponding experimental verification were performed based on a microcontroller.The experimental outputs were similar to those of numerical simulations,from which the feasibility and realizability of the generating grid scroll chaotic attractor under the frame of Colpitts oscillator model were illustrated.
出处 《四川大学学报(工程科学版)》 EI CAS CSCD 北大核心 2011年第3期145-149,共5页 Journal of Sichuan University (Engineering Science Edition)
基金 江苏省自然科学基金资助项目(BK2009105) 航空基金资助项目(2009ZC52038)
关键词 混沌系统 锯齿波函数 Colpitts振荡器 微控制器 chaotic system sawtooth wave function Colpitts oscillator microcontroller
  • 相关文献

参考文献13

  • 1Liu Z, Zhu X H, Hu W, et al. Principles of chaotic signal radar[J]. Int J Bifur Chaos,2007,17(5) :1735 -1739.
  • 2Abel A, Schwarz W. Chaos communications--Principles, schemes, and system analysis [ J ]. Proc IEEE, 2002, 90 (5) : 691 -710.
  • 3Maggio G M, Feo O D, Kennedy M P. Nonlinear analysis of the Colpitts oscillator and applications to design [ J ]. IEEE Trans Circuits and Syst-I, 1999,46 (9) : 1118 - 1130.
  • 4Mykolaitis G, Tamasevicius A, Bumeliene S. Experimental demonstration of chaos from the Colpitts oscillator in the VHF and the UHF ranges[J]. Electron Lett,2004, 40(2) : 91 -92.
  • 5Yalcin M E. Increasing the entropy of a random generator using n-scroll chaotic attractors [ J ]. Int J Bifur Chaos,2007,17(12) : 4471 -4479.
  • 6Lu J H, Chen G R. Generating muhiscroll chaotic attractors: theories, methods and applications [ J ]. Int J Bifur Chaos,2006,16 (4) : 775 - 858.
  • 7Lu J H, Yu S M, Leung H, et al. Experimental verification of multidirectional multi-scroll chaotic attractors [ J ]. IEEE Trans Circuits and Syst-I,2006,53 ( 1 ) : 149 - 165.
  • 8Yu S M, Lu J H, Leung H,et al. Design and implementation of n-scroll chaotic attractors from a general Jerk circuit [ J ]. IEEE Trans Circuits and Syst-I, 2005,52 (7) : 1459 - 1476.
  • 9Yu S M, Lu J H, Chen G R. Theoretical design and circuit implementation of multi-directional multi-torus chaotic attractors [ J ]. IEEE Trans Circuits and Syst-I, 2007,54 (9) : 2087 - 2098.
  • 10Yu S M, Tang W K S, Lu J H,et al. Generation of n x mwing Lorenz-like attractors from a modified Shimizu-Morioka model [ J ]. IEEE Trans Circuits and Syst-II, 2008, 55 (11) :1168 - 1172.

二级参考文献25

共引文献48

同被引文献24

  • 1乔晓华,孙玉霞.四螺旋鲁棒混沌吸引子[J].四川大学学报(工程科学版),2009,41(2):226-231. 被引量:4
  • 2揭泉林,王顺金,韦联福.量子混沌系统中的非定态对扰动的敏感性[J].西南交通大学学报,1996,31(3):296-301. 被引量:1
  • 3Chua L O. Memister-The missing circuit element[J].IEEE Transaction on Circuit Theory,1971,(05):507-519.
  • 4Chua L O,Kang S M. Memristive devices and systems[J].Proceedings of the IEEE,1976,(02):209-223.
  • 5Strukov D B,Snider G S,Stewart D R. The missing memristor found[J].Nature,2008.80-83.
  • 6Wang X B,Chen Y R,Xi H W. Spintronic memristor through spin torque induced magnetization motion[J].IEEE Electron Device Letters,2009,(03):294-297.
  • 7Martinelli G. Circuit modeling of nano-devices[J].Electronics Letters,2008,(22):1294-1295.
  • 8Riaza R. Nondegeneracy conditions for active memristive circuits[J].IEEE Transaction on Circuits and Systems—Ⅱ:Express Briefs,2010,(03):223-227.
  • 9Muthuswamy B,Chua L O. Simplest chaotic circuit[J].International Journal of Bifurcation and Chaos,2010,(05):1567-1580.
  • 10Muthuswamy B. Implementing memristor based chaotic circuits[J].International Journal of Bifurcation and Chaos,2010,(05):1335-1350.

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部