期刊文献+

油藏井间动态连通性反演方法研究 被引量:21

Study on inversion for reservoir inter-well dynamic connectivity
下载PDF
导出
摘要 随着油藏的不断开发,油藏参数发生了很大变化,静态连通性已经不能准确反映油层性质。基于注采井的生产动态数据,应用系统分析思想提出了对油藏井间动态连通性进行定量反演的研究方法,分别介绍了基于注采数据的多元线性回归模型和改进的多元线性回归模型。通过模型求解得到了表征油藏井间动态连通程度的权重系数。结合油藏数值模拟技术,验证了模型的有效性。应用2种不同模型分别反演了概念模型的井间动态连通性,并进行了对比分析。结果表明,在油藏岩石和流体耗散严重的情况下,改进的多元线性回归模型引入非线性扩散滤波系数能有效地消除注入信号时滞性和衰减性的影响,能够获得较好的井间动态连通性反演效果。 With the reservoir development, the reservoir parameters have changed greatly, therefore, the static connectivity can no longer reflect the nature of the reservoir accurately. Based on the production performance data of injection-production wells, methods of quantitative inversion for reservoir inter-well dynamic connectivity are forward with the system analysis idea. We have introduced a multi linear regression model and an advanced multi linear regression model based on injection-production data. Through the model solution, the weight factor which characterizes the degree of reservoir inter-well connectivity can be obtained. Combining with reservoir numerical simulation technology, validity of the two inversion methods of reservoir inter-well dynamic connectivity is verified. The inter-well dynamic connectivity of the typical reservoir conceptual model is inferred thereafter, and the two inversion methods are carried out with systematic comparative analysis.
作者 张明安
出处 《油气地质与采收率》 CAS CSCD 北大核心 2011年第3期70-73,116,共4页 Petroleum Geology and Recovery Efficiency
关键词 井间动态连通性 定量反演 生产动态 多元回归 数学模型 inter-well dynamic connectivity quantitative regression production performance multi linear regression math- ematical model
  • 相关文献

参考文献12

  • 1Heifer K J, Fox R J, MeGill C A. Novel techniques show links between reservoir flow directionality, earth stress, fault structure and geomechanical changes in mature waterfloods [ C ]. SPE 30711, 1995.
  • 2Sant'Anna Pizarro De, Estimating J O. Injectivity and lateral auto- correlation in heterogeneous media [ D ]. Austin : The University of Texas, 1998.
  • 3Refunjol B T, Lake L W. Reservoir characterization based on tracer response and rank analysis of production and Injection rates in reservoir characterization-recent advances [J]. AAPG Bulletin, 1999, 18(3) :198-201.
  • 4Soeriawinata T, Kelkar M. Reservoir management using production data[ C]. SPE 52224,1999.
  • 5Anh Dinh, Djebbar Tiab. Inferring interwell connectivity from well bottomhole pressure fluctuations in waterfloods[ R]. SPE 106851, 2007.
  • 6Albertoni A. Inferring interwell connectivity from well-rate fluctua- tions in waterfloods [ D ]. Austin : The University of Texas,2002.
  • 7Albertoni A, Lake W. Inferring connectivity only from well-rate luctuations in water floods[ C ]. SPE 83351,2003.
  • 8Gentil P. The use of muhilinear regression models in patterned waterfloods : physical meaning of the regression coettqcients [ D ]. Austin : The University of Texas,2005.
  • 9Yousef A A, Gentil P, Jensen J L, et al. A capacitance model to Infer Interwell connectivity from production and injection rate fluctuations[ R]. SPEREE 95322,2006:630-646.
  • 10Yousef A A,Jensen J L,Lake L W. Integrated interpretation of interwell connectivity using injection and production fluctuations [J]. Mathematical Geosciences,2009,41 ( 1 ) :81-102.

二级参考文献9

共引文献97

同被引文献182

引证文献21

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部