期刊文献+

土著微生物参与下河套平原地下水中砷的还原作用 被引量:4

Reduction of Arsenic in Groundwater from Hetao Plain with the Involvement of Indigenous Microbes
原文传递
导出
摘要 为查明土著微生物活动对高砷地下水形成的影响,利用河套平原高砷地下水中分离出的土著微生物(YH002)进行了微宇宙实验研究.实验结果表明:高砷地下水中加入的葡萄糖提供了微生物生长所需要的碳源,微生物大量繁殖,分泌的有机酸使溶液的pH值降低.在缺氧条件下,溶液中的OD值最高达到了0.189,pH值最低为6.22;在有氧条件下,OD值最高达到了0.286,pH值最低为6.04.溶液中As(Ⅲ)的初始质量浓度为74μg/L,占总砷质量浓度的11.2%,在加入微生物和葡萄糖后,在缺氧和有氧条件下,As(Ⅲ)的质量浓度分别为278μg/L和310μg/L,占总砷质量浓度的42%和47%.微宇宙实验说明地下水中的土著微生物能将As(V)还原成As(Ⅲ). In order to understand the effect of microbial activities on the occurrence of high arsenic groundwater,microcosm experiments were conducted using the indigenous microbe(YH002) isolated from high arsenic groundwater collected from Hetao Plain.The experiments show that the microcosm supplemented with bacteria and glucose,bacterial metabolism can excrete the organic acid which can cause pH decline.Under anoxic conditions,the maximal OD values reached 0.189 on the 7th day and the pH reduced to 6.22.However,under oxic conditions,the maximum of OD value also occurred on the 7th day with the value of 0.286,while pH values reduced to 6.04 at the end of the experiment.The initial concentration of As(III) was 74 μg/L,accounting for 11.2% of the total arsenic,when at the presence of the microbe and glucose,As(III) concentrations were 278 μg/L and 310 μg/L,accounting for 42% and 47% of the total arsenic,in the N2 and O2 atmosphere,respectively.The experimental results show that the indigenous microbe is capable of reducing As(V) to As(III) in groundwater.
出处 《地球科学(中国地质大学学报)》 EI CAS CSCD 北大核心 2011年第3期594-598,共5页 Earth Science-Journal of China University of Geosciences
基金 国家杰出青年科学基金项目(No.40425001) 国家自然科学基金重点项目(No.40830748)
关键词 微生物 地球化学 氧化还原 地下水 河套平原 arsenic; microbes; geochemistry; redox; groundwater; Hetao plain;
  • 相关文献

参考文献14

  • 1Croal,L. R. ,Gralnick,J. A. ,Malasarn,D. ,et al. ,2004. The genetics of geochemistry. Annual Review of Genetics, 38.. 175-202. doi: 10. 1146/annurev. genet. 38. 072902. 091138.
  • 2Cullen,W. R. ,Reimer, K. J. , 1989. Arsenic speciation in the environment. Chemical Reviews, 89 (4) : 718 --764. doi : 10. 1021/cr00094a002.
  • 3Duan, M. Y. , Xie, Z. M. , Wang, Y. X. , et al. , 2009. Microcosm studies on iron and arsenic mobilization from aquifer sediments under different conditions of microbial activity and carbon source. Environmental Geology, 57: 997-1003. doi: 10. 1007/s00254-008-1384-z.
  • 4Gihring,T. M. , Drusehel, G. K. , Mceleskey, R. B. , et al. , 2001. Rapid arsenite oxidation by thermus aquaticus and thermus thermophilus: field and laboratory investigations. Environmental Science and Technology, 35: 3857 -3862.
  • 5Herbel, M. , Fendorf, S. , 2006. Biogeochemical processes controlling the speeiation and transport of arsenic within iron coated sands. Chemical Geology, 228( 1 - 3) : 16 -32.
  • 6Humayoun,S. B. , Bano, N. , Hollibaugh, J. T. , 2003. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Applied and Environmental Microbiology, 69.. 1030- 1042. doi: i0. 1128/AEM. 69.2. 1030-1042. 2003.
  • 7Islam,F. S. , Gault, A. G. , Boothman, C. , et al. , 2004. Role of metal-reducing bacteria in arsenic release from Bengal deltasediments. Nature, 430 : 68- 71.
  • 8Kasan,H. C. , 1993. The role of waste activated sludge and bacteria in metal--ion removal from solution. Environmental Science and Technology, 23 ( 1 ) : 79- 117.
  • 9Katsoyiannis, I. , Zouboulis, A. , Althoff, H. , et al. , 2002. As (III) removal from groundwaters using fixed-bed upflow bioreactors. Chemosphere, 47 : 325- 332.
  • 10Le, X. C. , Yalcin, S. , Ma, M. , 2000. Speciation of submicrogram per liter levels of arsenic in water: on-site species separation integrated with sample collection. Environ-mental Science and Technology, 34:2342- 1347.

同被引文献74

  • 1孙振亚,牟善彬,叶先贤,孙育斌.一种显微管状构造的羟铁矿[J].科学通报,1995,40(23):2196-2198. 被引量:7
  • 2蔺昕,李培军,孙铁珩,台培东,巩宗强,张海荣.石油污染土壤的生物修复与土壤酶活性关系[J].生态学杂志,2005,24(10):1226-1229. 被引量:37
  • 3杨维,王泳,李宇斌,潘俊,袁雅姝,郭毓.饱水岩层生物地球化学特征与氮转化[J].沈阳建筑大学学报(自然科学版),2006,22(5):812-816. 被引量:5
  • 4石荣,贾永锋,王承智.土壤矿物质吸附砷的研究进展[J].土壤通报,2007,38(3):584-589. 被引量:55
  • 5李政红,张翠云,张胜,殷密英,马琳娜,郭秀红.地下水微生物学研究进展综述[J].南水北调与水利科技,2007,5(5):60-63. 被引量:11
  • 6张淑贞,李伟,单孝全.低分子量有机酸对污染土壤中砷的释放及其形态分布的影响[J].广西师范大学学报,2003,2i(1):22-23.
  • 7Islam F S,Gault A G, Boothman C, et al. Role of metal reducing bacteria in arsenic release from Bengal dettasediments[J]. Nature, 2004,430:68-71.
  • 8Livesey N T, Huang P M. Adsorption of arsenate by soils and its relation to selected chemical properties and anions[J]. Soil Science, 1981,131:88-94.
  • 9Smith E, Naidu R, Alston A M. Chemistry of inorganic arsenic in soils: Ⅱ. Effect of phosphorus, sodium, and calcium on arsenic sorp- tion[J]. Journal of Environmental Quality, 2002,31 : 557-563.
  • 10Manning B A, Goldberg S. Modeling arsenate competitive adsorption on kaolinite, montmorillonte, and illite[J]. Clays and Clay Miner- al, 1996,44 : 609-623.

引证文献4

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部