期刊文献+

非自治的具有阶段结构的时滞捕食被捕食模型的周期解(英文)

Periodic solution for a delayed nonautonomous stage-structured predator-prey model
下载PDF
导出
摘要 研究了非自治的具有阶段结构的时滞捕食被捕食模型的周期解的存在问题.模型中阶段结构是针对被捕食者种群,而时滞是由于捕食者捕食食饵而转化成自身的一部分的过程引起的.利用Gaines及Mawhin的叠合度理论,文章得到了该模型周期解存在的充分条件.最后给出了一个实例以验证文章结果的可行性. A nonautonomous predator-prey model with stage-structure on prey and gestation delay is studied.It is assumed that immature and mature individuals of the prey species are divided by a fixed age,and that predator only attack the immature individuals.By using Mawhin’s continuation theorem of coincidence degree theory,a sufficient condition on the existence of positive periodic solutions for the model is obtained.An example is presented to illustrate the feasibility of our main results.
出处 《新疆大学学报(自然科学版)》 CAS 2011年第1期57-64,共8页 Journal of Xinjiang University(Natural Science Edition)
基金 Supported by The National Natural Science Foundation of P.R. China (60764003) The Major Project of The Ministry of Education of P.R. China (207130) The Scientific Research Programmes of Colleges in Xinjiang (XJEDU2007G01, XJEDU2006I05)
关键词 非自治捕食被捕食模型 阶段结构 正周期解 时滞 叠合度 Nonautonomous predator-prey model Stage-structure Positive periodic solutions Time delay Coincidence degree.
  • 相关文献

参考文献13

  • 1Aiello W G, Freedman H I. A time delay of single-spacies growth with stage strcture[J]. Math Biosci, 1990,101:139-153.
  • 2MA Zhi-hui, Li Zhi-zhen, Wang Shu-fan, et al. Permanence of a predator-prey system with stage strcuture and time delay[J]. Appl Math Comput, 2008, 201: 65-71.
  • 3Wei Feng Ying, Wang Ke. Permanence of variable coefficients predator-prey system with stage strcuture[J]. Appl Math Comput, 2006, 180:594- 598.
  • 4Pei Yongzhen, Li Changguo, Chen Lansun. Continuous and impusive harvesting strategies in a stage-strcutured predator-prey model with time delay[J]. Mathematics and Computer in Simulation, 2009.
  • 5Jiao Jiaojun, Meng Xinzhu, Chen Lansun. A stage-structured Holling mass defence predator-prey model with impulsive perturbations on predators[J]. Appl Math Comput, 2007, 189:1448-1458.
  • 6Song Xinyu, hao M, Meng X. A stage-strcutured predator-prey model with disturbing pulse and time delays[J]. Appl Math Modelling, 2009, 33:211-4223.
  • 7Gaines R E, Mawhin J L. Conincidence Degree and Nonliear Differencial Equations[M]. Springer-Verlag, Berlin, 1997.
  • 8Li Y, Kuang Y. Periodic solutions of periodic Lotka-Volterra equationg and systems[J]. J Math Anal Appl, 2001, 255:260-280.
  • 9Chen F, You M. Permanence extinction and periodic solution of the predator-prey system with Beddington-DeAngelis funtional response and stage strcuture for prey[J]. Nonlinear Anal R W A, 2008, 9:207-221.
  • 10Yang S J, Shi B. Periodic solution for three-stage-structured a predator-prey system with time delay[J]. J Math Anal Appl, 2008, 341:287-294.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部