期刊文献+

Adaptive and optimal detection of elastic object scattering with single-channel monostatic iterative time reversal

Adaptive and optimal detection of elastic object scattering with single-channel monostatic iterative time reversal
下载PDF
导出
摘要 In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method. In active sonar operation, the presence of background reverberation and the low signal-to-noise ratio hinder the detection of targets. This paper investigates the application of single-channel monostatic iterative time reversal to mitigate the difficulties by exploiting the resonances of the target. Theoretical analysis indicates that the iterative process will adaptively lead echoes to converge to a narrowband signal corresponding to a scattering object's dominant resonance mode, thus optimising the return level. The experiments in detection of targets in free field and near a planar interface have been performed. The results illustrate the feasibility of the method.
机构地区 Institute of Acoustics
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期300-304,共5页 中国物理B(英文版)
基金 Project supported by the Innovation Foundation of Chinese Academy of Sciences (Grant No. CXJJ-260)
关键词 iterative time reversal resonant scattering echo enhancement iterative time reversal, resonant scattering, echo enhancement
  • 相关文献

参考文献10

  • 1Prada C, Wu F and Fink M 1991 J. Acoust. Soc. Am. 90 1119.
  • 2Prada C, Thomas J L and Fink M 1995 J. Acoust. Soc. Am. 97 62.
  • 3Song H C, Kuperman W A, Hodgkiss W S, Akal T and Ferla C 1999 J. Acoust. Soc. Am. 105 3176.
  • 4Montaldo G, Tanter M and Fink M 2004 J. Acoust. Soc. Am. 115 776.
  • 5Prada C, Manneville S, Spoliansky D and Fink M 1996 J. Acoust. Soc. Am. 99 2067.
  • 6Sabra K G, Roux P, Song H C, Hodgkiss W S, Kuperman W A, Akal T and Stevenson J M 2006 J. Acoust. Soc. Am. 120 1305.
  • 7Isaacson D, Cheney M and Lassas M 2001 SIAM J. Appl. Math. 61 1628.
  • 8Hickling R 1962 J. Acoust. Soc. Am. 34 1582.
  • 9Flax L, Dragonette L R and Uberall H 1978 J. Acoust. Soc. Am. 63 723.
  • 10Bishop G C and Smith J 1999 J. Acoust. Soc, Am. 105 130.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部