期刊文献+

Different temperature dependence of carrier transport properties between Al_xGa_(1-x)N/In_yGa_(1-y)N/GaN and Al_xGa_(1-x)N/GaN heterostructures 被引量:3

Different temperature dependence of carrier transport properties between Al_xGa_(1-x)N/In_yGa_(1-y)N/GaN and Al_xGa_(1-x)N/GaN heterostructures
下载PDF
导出
摘要 The temperature dependence of carrier transport properties of Alx Gal-xN/InyGal-yN/CaN and AlzGal-xN/GaN heterostructures has been investigated. It is shown that the Hall mobility in Alo.25Gao.75N/Ino.03Gao.97N/GaN heterostructures is higher than that in Alo.25Gao.75N/GaN heterostructures at temperatures above 500 K, even the mobility in the former is much lower than that in the latter at 300 K. More importantly, the electron sheet density in Alo.25Gao.75N/Ino.03Gao.97N/GaN heterostructures decreases slightly, whereas the electron sheet density in Al0.25Gao.75N/CaN heterostructures gradually increases with increasing temperature above 500 K. It is believed that an electron depletion layer is formed due to the negative polarization charges at the Iny Can-yN/GaN heterointerface induced by the compressive strain in the InyCal-yN channel, which effectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures. The temperature dependence of carrier transport properties of Alx Gal-xN/InyGal-yN/CaN and AlzGal-xN/GaN heterostructures has been investigated. It is shown that the Hall mobility in Alo.25Gao.75N/Ino.03Gao.97N/GaN heterostructures is higher than that in Alo.25Gao.75N/GaN heterostructures at temperatures above 500 K, even the mobility in the former is much lower than that in the latter at 300 K. More importantly, the electron sheet density in Alo.25Gao.75N/Ino.03Gao.97N/GaN heterostructures decreases slightly, whereas the electron sheet density in Al0.25Gao.75N/CaN heterostructures gradually increases with increasing temperature above 500 K. It is believed that an electron depletion layer is formed due to the negative polarization charges at the Iny Can-yN/GaN heterointerface induced by the compressive strain in the InyCal-yN channel, which effectively suppresses the parallel conductivity originating from the thermal excitation in the underlying GaN layer at high temperatures.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期374-378,共5页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant Nos.60906041,60736033,60890193,and 10774001)
关键词 temperature dependence Hall mobility parallel conductivity temperature dependence, Hall mobility, parallel conductivity
  • 相关文献

参考文献15

  • 1Simin G, Hu X, Tarakji A, Zhang J, Koudymov A, Saygi S, Yang J, Khan M A, Shur M S and Gaska R 2001 Jpn. J. Appl. Phys. 40 L1142.
  • 2Pala N, Rumyantsev S, Shur M, Gaska R, Hu X, Yang J, Simin G and Khan M A 2003 Solid State Electron. 47 1099.
  • 3Wang C X, Tsubaki K, Kobayashi N, Makimato T and Maeda N 2004 Appl. Phys. Lett. 84 2313.
  • 4Okamoto N, Hoshino K, Hara N, Takikawa M and Arakawa Y 2004 J. Cryst. Growth 272 278.
  • 5Xie J, Leach J H, Ni X, Wu M, Shimada R, Ozgiir U and Morkoq H 2007 Appl. Phys. Lett. 91 262102.
  • 6Lanford W, Kumax V, Schwindt R, Kuliev A, Adesida I, Dabiran A M, Wowchak A M, Chow P P and Lee J W 2004 IEEE Electron. Lett. 40 771.
  • 7Ambacher O, Smart J, Shealy J R, Weimann N G, Chu K. Murphy M, Dimitrov R, Wittmer L and Stutzmann M, Rieser W and Hiisenbeck J 1999 J. Appl. Phys. 85 3222.
  • 8Look D C and Molnar R J 1997 Appl. Phys. Lett. 70 3377.
  • 9Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Qin Z X and Zhang G Y 2007 Appl. Phys. A 88 715.
  • 10Dziuba Z, Antoszewski J, Dell J M, Faraone L, Kozodoy P, Keller S, Keller B, DenBaars S P and Mishra U K 1997 J. Appl. Phys. 82 2996.

同被引文献10

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部