期刊文献+

Low power penalty tunable slow light using vertical-cavity surface-emitting laser amplifier

Low power penalty tunable slow light using vertical-cavity surface-emitting laser amplifier
原文传递
导出
摘要 A tunable slow light of 2.5-Gb/s pseudo-random binary sequence signal using a 1550-nm vertical-cavity surface-emitting laser (VCSEL) is experimentally demonstrated. The influences of the bias current and the gain saturation on the slow light are investigated. With bias current increasing, tunable optical group delay up to 98 ps is obtained at room temperature. Demonstration of the time delay between 16 and 24 ps by signal intensity change is reported. Under an appropriate bias current, by tuning the input signal to track the peak gain wavelength of the VCSEL, slow light of a power penalty as low as 1 dB is achieved. With such a low power penalty, the VCSEL has a great potential application as a compact optical buffer. A tunable slow light of 2.5-Gb/s pseudo-random binary sequence signal using a 1550-nm vertical-cavity surface-emitting laser (VCSEL) is experimentally demonstrated. The influences of the bias current and the gain saturation on the slow light are investigated. With bias current increasing, tunable optical group delay up to 98 ps is obtained at room temperature. Demonstration of the time delay between 16 and 24 ps by signal intensity change is reported. Under an appropriate bias current, by tuning the input signal to track the peak gain wavelength of the VCSEL, slow light of a power penalty as low as 1 dB is achieved. With such a low power penalty, the VCSEL has a great potential application as a compact optical buffer.
出处 《Chinese Optics Letters》 SCIE EI CAS CSCD 2011年第5期44-46,共3页 中国光学快报(英文版)
基金 supported by the Fundamental Research Funds for the Central Universities of China under Grant No. SWJTU09ZT14
关键词 Bias currents Binary sequences Group delay Surface emitting lasers Bias currents Binary sequences Group delay Surface emitting lasers
  • 相关文献

参考文献15

  • 1A. E. Willner, B. Zhang, L. Zhang, L. S. Yan, and I. Fazal, IEEE J. Selected Topics Quantum Electron. 14, 691 (2008).
  • 2Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, Phys. Rev. Lett. 94 153902 (2005).
  • 3G. Lenz, B. J. Eggleton, C. K. Madsen, and R. E. Slusher, IEEE J. Quantum Electron. 37, 525 (2001).
  • 4C. J. Chang-Hasnain and S. L. Chuang, J. Lightwave Technol. 24, 4642 (2006).
  • 5C. J. Chang-Hasnain, P. C. Ku, I. Kim, and S. L. Chuang, Proc. IEEE 91, 1884 (2003).
  • 6C. F. Wang, J. Cheng, and S. S. Han, Chin. Opt. Lett. 8, 115 (2010).
  • 7C. Li, H. Tian, H. Lu, and Y. Ji, Acta Opt. Sin. (in Chinese) 30, 2108 (2010).
  • 8J. Zhao, X. Yang, Y. Li, Z. Tong, Y. Liu, and Q. Zhao, Acta Opt. Sin. (in Chinese) 30, 2437 (2010).
  • 9X. Zhao, P. Palinginis, B. Pesala, and C. J. C. hang- Hasnain, Opt. Express 13, 7899 (2005).
  • 10P. C. Peng, F. M. Wu, C. T. Lin, J. H. Chen, P. T. Shih, W. C. Kao, W. J. Jiang, H. C. Kuo, and S. Chi, in Proceedings of Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science JThA2 (2008).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部